The application of DNA intercalator 9-aminoacridine allowed us to increase the resolution of chromosome C-banding and DAPI-banding patterns and to investigate chromosomal polymorphism in karyotypes of seven spring and six winter rape varieties. It was shown that the pericentromeric and intercalary C-bands of most of the chromosomes in spring rape were smaller in size and less polymorphic than those of winter rape. More 26S and 5S rDNA sites were found in the winter rape karyotypes than the spring varieties. Separate or colocalized 26S and 5S rDNA sites were revealed on chromosomes 4, 5, 6, 8, 10, 14, 15, 16 and 18. Intervarietal and intravarietal polymorphism of the number and chromosomal localization of rDNA sites were detected. The generalized idiogram of chromosomes of 13 Brassica napus varieties with account of all possibilities of C-banding patterns as well as localization of 26S and 5S rDNA sites were constructed. Polymorphism of the examined molecular and cytogenetic markers as well as the heterozygosis level of FAE1.1 gene controlling erucic acid synthesis in rapeseed was higher in the winter varieties than in the spring ones. The obtained data were in a atisfactory agreement with increased tolerance to environmental stress conditions of winter rape.
Flax, Linum usitatissimum L., is a valuable multi-purpose plant, and currently, its genome is being extensively investigated. Nevertheless, mapping of genes in flax genome is still remaining a challenging task. The cellulose synthase (CesA) multigene family involving in the process of cellulose synthesis is especially important for metabolism of this fiber crop. For the first time, fluorescent in situ hybridization (FISH)-based chromosomal localization of the CesA conserved fragment (KF011584.1), 5S, and 26S rRNA genes was performed in landrace, oilseed, and fiber varieties of L. usitatissimum. Intraspecific polymorphism in chromosomal distribution of KF011584.1 and 5S DNA loci was revealed, and the generalized chromosome ideogram was constructed. Using BLAST analysis, available data on physical/genetic mapping and also whole-genome sequencing of flax, localization of KF011584.1, 45S, and 5S rRNA sequences on genomic scaffolds, and their anchoring to the genetic map were conducted. The alignment of the results of FISH and BLAST analyses indicated that KF011584.1 fragment revealed on chromosome 3 could be anchored to linkage group (LG) 11. The common LG for 45S and 5S rDNA was not found probably due to the polymorphic localization of 5S rDNA on chromosome 1. Our findings indicate the complexity of integration of physical, genetic, and cytogenetic mapping data for multicopy gene families in plants. Nevertheless, the obtained results can be useful for future progress in constructing of integrated physical/genetic/cytological maps in L. usitatissimum which are essential for flax breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.