A Z-pinch dynamic hohlraum can create the high-temperature radiation field required by indirect-drive inertial confinement fusion. A dynamic hohlraum with peak radiation temperature over 300 eV can be obtained with a [Formula: see text]50 MA Z-pinch driver according to the scaling law of dynamic hohlraum radiation temperature vs drive current. Based on a uniform 300 eV radiation temperature profile with a width of 10 ns, three double-shell capsules with radii of 2, 2.5, and 3 mm are proposed, and the corresponding fusion yields from a one-dimensional calculation are 28.8, 56.1, and 101.6 MJ. The implosion dynamics of the 2.5 mm-radius capsule is investigated in detail. At ignition, the areal density of the fuel is about 0.53 g/cm2, the fuel pressure is about 80 Gbar, and the central ion temperature is about 4.5 keV, according to the one-dimensional simulation. A two-dimensional simulation indicates that the double-shell capsule can implode nearly spherically when driven by the radiation field of a Z-pinch dynamic hohlraum. The sensitivities of the fusion performance to the radiation temperature profiles and to deviations in the capsule parameter are investigated through one-dimensional simulation, and it is found that the capsule fusion yields are rather stable in a quite large parameter space. A one-dimensional simulation of a capsule embedded in 50 mg/cm3 CH foam indicates that the capsule performance does not change greatly in the mimicked environment of a Z-pinch dynamic hohlraum. The double-shell capsules designed here are also applicable to laser indirect-drive inertial fusion, if a laser facility can produce a uniform 300 eV radiation field and sustain it for about 10 ns.
A new indirectly driven cylindrical target is proposed for Z-pinch inertial confinement fusion, and the target implosion dynamics is simulated with a combination of the mass-point model and the radiation hydrodynamic model. Driven by a current waveform with the peak value of 60 MA and 10-90% rising time of 180 ns, the shell kinetic energy of 5 MJ cm −1 can be obtained when the 60 mg cm −1 liner with initial radius 5 cm is imploded to radius of 5 mm. The simulated kinetic energy is loaded to compress the multi-layer cylindrical target, and 24.6 MJ fusion energy can be released according to the radiation hydrodynamic simulation. The power balance relationship is analyzed for the fusion fuel, and the fuel is ignited in the volume-ignition style. The target here can avoid the problem of coupling between the cylindrical Z-pinch and spherical fusion capsule, and can make use of dynamics hohlraum to weaken the influence of Z-pinch instability on the fuel compression. The implosion dynamics of the cylindrical fusion target is easy to diagnose from the axial direction, which makes it suitable to be investigated in future experiments.
An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.
A study of the evolution and structure of magnetically driven converging radiative shock waves generated in Z-pinch foil liner implosion at an 8-MA pulsed-power facility is presented. End-on extreme ultraviolet images show an inward propagating shock that is circular to <±5% as a function of azimuthal angle, with a standard deviation in the emission intensity of <±30%, implying good cylindrical symmetry. The launch time and shock trajectory are determined by linear fitting of the measured data, giving a shock speed of Mach 6. One-dimensional radiation hydrodynamics MULTI-IFE-Z simulations agree with the experimental observations qualitatively and confirm the existence of a radiative precursor. It is demonstrated with experiment and simulation that the radiative shock wave is generated by magnetic piston compression of dense plasma shell. Analytic estimates of the post-shock plasma conditions suggest that these Z-pinch magnetically-driven high-Mach shocks are strongly radiatively cooled. It is applicable to the optically thick downstream, optically thin upstream radiative shock regime; thus, it can be described by three-layer model, which potentially could be applied to scale studies of astrophysical shocks in the laboratory.
A source penumbral image reconstruction method with linear mapping principle for geometrical optics is established. The ideal binary point spread function (PSF) can be obtained using a geometrical optics model. The system PSF with certain sharpness was obtained using a Monte Carlo (MC) model. Considering other factors besides the transportation of the x (gamma)-rays or particles (fusion neutrons) in the penumbral encoding aperture in MC model, such as the scattering background and the systematic error, the PSF from MC model "source-image pair matching" experiments with a large area standard oval shape source were processed. A method for correcting and calibrating the PSF by the expectation maximization adaptive algorithm was established and the optimized PSF with 22.30 microm sharpness was achieved. This is more consistent with the real system PSF despite the increased noise level of the two-dimensional PSF and large irregularity in the PSF profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.