Polarization is a general descriptor of light and contains information about reflecting objects that traditional intensity-based sensors ignore. Difficult computer vision tasks such as image segmentation and object orientation are made tractable with polarization vision techniques. Specularities, occluding contours, and material properties can be readily extracted if the Stokes polarization parameters are available. Astrophysicists employ polarization information to measure the spatial distribution of magnetic fields on the surface of the sun. In the medical field, analysis of the polarization allows the diagnose of disease in the eyes. The retinae of most insect and certain vertebrate species are sensitive to polarization in their environment, but humans are blind to this property of light. Biologists use polarimeters to investigate behaviors of animals-vis-à-vis polarization-in their natural habitats. In this paper, we first present the basics of polarization sensing and then discuss integrated polarization imaging sensors developed in our laboratory.
We report visible (380–650 nm) electroluminescence from reverse-biased silicon p-n junctions and from n- and p-type field-effect transistors designed for a standard chip-fabrication process. We measured the spectra of over 40 junctions and devices and found that they differed from previously reported silicon electroluminescence spectra. We use a hot carrier recombination model and account for Fabry-Perot effects to explain the observed electroluminescence spectrum. Our model’s prediction is in good agreement with the measured spectra.
We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45 ± 0.06 mA with durations as short as 10 µs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68–130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9–16.7°/s for the MVP2 and 2.0–14.2°/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference (t-test, p = 0.034), suggesting that the MVP2A achieves performance at least as good as the larger MVP2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.