SUMMARYEuroRotaNet, a laboratory network, was established in order to determine the diversity of co-circulating rotavirus strains in Europe over three or more rotavirus seasons from 2006/2007 and currently includes 16 countries. This report highlights the tremendous diversity of rotavirus strains co-circulating in the European population during three years of surveillance since 2006/ 2007 and points to the possible origins of these strains including genetic reassortment and interspecies transmission. Furthermore, the ability of the network to identify strains circulating with an incidence of o1% allowed the identification of possible emerging strains such as G8 and G12 since the beginning of the study ; analysis of recent data indicates their increased incidence.
Picobirnavirus (PBV) is a small, non-enveloped, bisegmented double-stranded RNA (dsRNA) virus of vertebrate hosts. The name 'Picobirnavirus' derives from the prefix 'pico' (latin for 'small') in reference to the small virion size, plus the prefix 'bi' (latin for 'two') and the word 'RNA' to indicate the nature of the viral genome. The serendipitous discovery of PBV dates back to 1988 from Brazil, when human fecal samples collected during the acute gastroenteritis outbreaks were subjected for routine rotavirus surveillance by polyacrylamide gel electrophoresis (PAGE) and silver straining (S/S). The PAGE gels after silver staining showed a typical 'two RNA band' pattern, and it was identified as Picobirnavirus. Likewise, the feces of wild black-footed pigmy rice rats (Oryzomys nigripes) subjected for PAGE assay by the same research group in Brazil reported the presence of PBV (Pereira et al., J Gen Virol 69:2749-2754. PBVs have been detected in faeces of humans and wide range of animal species with or without diarrhoea, worldwide. The probable role of PBV as either a 'primary diarrhoeal agent' in 'immunocompetent children'; or a 'potential pathogen' in 'immunocompromised individuals' or an 'innocuous virus' in the intestine remains elusive and needs to be investigated despite the numerous reports of the presence of PBV in fecal samples of various species of domestic mammals, wild animals, birds and snakes; our current knowledge of their biology, etiology, pathogenicity or their transmission characteristics remains subtle. This review aims to analyse the veterinary and zoonotic aspects of animal Picobirnavirus infections since its discovery.
A total of 8879 rotavirus-positive samples were characterized: 2129 cases were from the 2005-2006 season, 4030 from the 2006-2007 season, and 2720 from the ongoing 2007-2008 season. A total of 30 different G and P type combinations of strains circulated in the region from 2005 through 2008. Of these strains, 90% had genotypes commonly associated with human infections-G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8]-and 1.37% represented potential zoonotic introductions. G1P[8] remained the most prevalent genotype in Europe as a whole, but the incidence of infection with G1P[8] rotavirus strains was <50% overall, and all 3 seasons were characterized by a significant diversity of cocirculating strains. The peak incidence of rotavirus infection occurred from January through May, and 81% of case patients were aged <2.5 years. Conclusions. Data gathered through EuroRotaNet will provide valuable background information on the rotavirus strain diversity in Europe before the introduction of rotavirus vaccines, and the network will provide a robust method for surveillance during vaccine implementation.
Picobirnaviruses (PBV) are small, non-enveloped viruses with a bisegmented double-stranded RNA genome. In this study a PBV strain, PBV/Horse/India/BG-Eq-3/2010, was identified in the faeces of a 10 month old weaned female foal with diarrhoea in January 2010 from Kolkata, India. Surprisingly, sequence comparison and phylogenetic analysis of a short stretch of the RNA dependent RNA polymerase gene revealed close genetic relatedness (> 98% nucleotide identity) to a human genogroup I PBV strain (Hu/GPBV1) detected earlier from the same part of India. Our observations together with earlier findings on genetic relatedness between human and animal PBV warrant further studies on zoonotic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.