Driver distraction behavior is prone to induce traffic accidents. Therefore, it is necessary to detect them to caution drivers in time for traffic safety. In driver behavior recognition, the variety of behaviors and the diversity of the driving environment can have a certain effect on detection accuracy, and the information loss is severe in most existing methods. These make it challenging to improve the real-time accuracy of driver distraction behavior. In this paper, we propose an improved YOLOv7 based on the channel expansion and attention mechanism for driver distraction behavior detection, named CEAM-YOLOv7. The global attention mechanism (GAM) module focuses on the key information to improve accuracy. With the insertion of GAM into the Backbone and Head of YOLOv7, the global dimensional interaction features are scaled up to enable the network to extract key features. Furthermore, In the CEAM-YOLOv7 architecture, the convolution computation has been significantly simplified, which is conducive to increasing the detection speed. Combined with the Inversion and contrast limited adaptive histogram equalization (CLAHE) image enhancement algorithm, a channel expansion (CE) algorithm for data augmentation is presented to further optimize the detection effect of infrared (IR) images. On the driver distraction IR dataset of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.