Screen printing is a known method to produce disposable and low-cost sensors. Depending on the application such as food analysis, environmental health monitoring, disease detection and toxin detection, screen-printed electrodes can be fabricated in a variety of sizes and shapes. Modification of the electrode's material and geometrical dimension may be done to produce effective screen-printed three-electrodes system. Thus, the effects of varying the working electrode (WE) area in radius of 0.9 mm to 2 mm, gap spacing between electrodes ranging from 0.5 mm to 1.6 mm, and the width of the counter electrode in range of 0.7 to 1.3 mm on sensor's performance was investigated in this study through COMSOL simulation. It was found that the modification of the working electrode radius and the gap between the electrodes has the most significant effect on sensor's performance, while modifying the width of the counter electrode (CE) shows no significant effect. Sensors with 0.9 mm radius or 2.54 mm² WE area and 0.5 mm gap spacing has shown the optimum performance with 0.026 A/m² current density which is contributed by 0.044 pF capacitance value. As a conclusion, regardless of the width of counter electrodes, a smaller gap between electrodes and a smaller working area would lead to optimal performance of a screenprinted three-electrode sensor system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.