HIV-1 infection disrupts the intestinal immune system, leading to microbial translocation and systemic immune activation. We investigated the impact of HIV-1 infection on the intestinal microbiome and its association with mucosal T cell and dendritic cell (DC) frequency and activation, as well as with levels of systemic T cell activation, inflammation and microbial translocation. Bacterial 16S ribosomal DNA sequencing was performed on colon biopsies and fecal samples from subjects with chronic, untreated HIV-1 infection and uninfected control subjects. Colon biopsies of HIV-1 infected subjects had increased abundances of Proteobacteria and decreased abundances of Firmicutes compared to uninfected donors. Furthermore at the genus level, a significant increase in Prevotella and decrease in Bacteroides was observed in HIV-1 infected subjects, indicating a disruption in the Bacteroidetes bacterial community structure. This HIV-1-associated increase in Prevotella abundance was associated with increased numbers of activated colonic T cells and myeloid DCs. Principal coordinates analysis demonstrated an HIV-1-related change in the microbiome that was associated with increased mucosal cellular immune activation, microbial translocation and blood T cell activation. These observations suggest that an important relationship exists between altered mucosal bacterial communities and intestinal inflammation during chronic HIV-1 infection.
BackgroundSystemic inflammation is a characteristic of both HIV-1 infection and aging (“inflammaging”). Intestinal epithelial barrier damage (IEBD) and microbial translocation (MT) contribute to HIV-associated inflammation, but their impact on inflammaging remains unclear.MethodsPlasma biomarkers for IEBD (iFABP), MT (LPS, sCD14), T-cell activation (sCD27), and inflammation (hsCRP, IL-6) were measured in 88 HIV-1 uninfected (HIVneg) and 83 treated, HIV-1-infected (HIVpos) adults from 20–100 years old.ResultsAge positively correlated with iFABP (r = 0.284, p = 0.008), sCD14 (r = 0.646, p = <0.0001) and LPS (r = 0.421, p = 0.0002) levels in HIVneg but not HIVpos subjects. Age also correlated with sCD27, hsCRP, and IL-6 levels regardless of HIV status. Middle-aged HIVpos subjects had elevated plasma biomarker levels similar to or greater than those of elderly HIVneg subjects with the exception of sCD14. Clustering analysis described an inflammaging phenotype (IP) based on iFABP, sCD14, sCD27, and hsCRP levels in HIVneg subjects over 60 years of age. The IP in HIVneg subjects was used to develop a classification model that was applied to HIVpos subjects to determine whether HIVpos subjects under 60 years of age were IP+. HIVpos IP+ subjects were similar in age to IP- subjects but had a greater risk of cardiovascular disease (CVD) based on Framingham risk score (p = 0.01).ConclusionsWe describe a novel IP that incorporates biomarkers of IEBD, MT, immune activation as well as inflammation. Application of this novel IP in HIV-infected subjects identified a group at higher risk of CVD.
Optical coherence tomography (OCT) has established itself as the dominant imaging modality in the management of glaucoma and retinal diseases, providing high-resolution visualization of ocular microstructures and objective quantification of tissue thickness and change. This article reviews the history of OCT imaging with a specific focus on glaucoma. We examine the clinical utility of OCT with respect to diagnosis and progression monitoring, with additional emphasis on advances in OCT technology that continue to facilitate glaucoma research and inform clinical management strategies.
Since the introduction of commercial optical coherence tomography (OCT) systems, the ophthalmic imaging modality has rapidly expanded and it has since changed the paradigm of visualization of the retina and revolutionized the management and diagnosis of neuro-retinal diseases, including glaucoma. OCT remains a dynamic and evolving imaging modality, growing from time-domain OCT to the improved spectral-domain OCT, adapting novel image analysis and processing methods, and onto the newer swept-source OCT and the implementation of adaptive optics (AO) into OCT. The incorporation of AO into ophthalmic imaging modalities has enhanced OCT by improving image resolution and quality, particularly in the posterior segment of the eye. Although OCT previously captured in-vivo cross-sectional images with unparalleled high resolution in the axial direction, monochromatic aberrations of the eye limit transverse or lateral resolution to about 15-20 μm and reduce overall image quality. In pairing AO technology with OCT, it is now possible to obtain diffraction-limited resolution images of the optic nerve head and retina in three-dimensions, increasing resolution down to a theoretical 3 μm3. It is now possible to visualize discrete structures within the posterior eye, such as photoreceptors, retinal nerve fiber layer bundles, the lamina cribrosa, and other structures relevant to glaucoma. Despite its limitations and barriers to widespread commercialization, the expanding role of AO in OCT is propelling this technology into clinical trials and onto becoming an invaluable modality in the clinician's arsenal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.