Currently, a large part of forest roads with a bituminous surface course constructed in the Czech Republic in the second half of the last century has been worn out. The aim of the study is to verify the possibility and the accuracy of the road wearing course damage detected by four different remote sensing methods: close range photogrammetry, terrestrial laser scanning, mobile laser scanning and airborne laser scanning. At the beginning of verification, cross sections of the road surface were surveyed geodetically and then compared with the cross sections created in the DTMs which were acquired using the four methods mentioned above. The differences calculated between particular models and geodetic measurements show that close range photogrammetry achieved an RMSE of 0.0110 m and the RMSE of terrestrial laser scanning was 0.0243 m. Based on these results, we can conclude that these two methods are sufficient for the monitoring of the asphalt wearing course of forest roads. These methods allow precise and objective localization, size and quantification of the road damage. By contrast, mobile laser scanning with an RMSE of 0.3167 m does not reach the required precision for the damage detection of forest roads due to the vegetation that affects the precision of the measurements. Similar results are achieved by airborne laser scanning, with an RMSE of 0.1392 m. As regards the time needed, close range photogrammetry appears to be the most appropriate method for damage detection of forest roads.
This study is devoted to the possibility of using advanced insulation materials, such as Vacuum Insulation Panels (VIP), in the insulation and reconstruction of buildings, in connection with the green elements that are installed on the facade in the case of the use of external thermal insulation composite systems (ETICS). The use of VIP as part of the insulation system will result in a significant reduction in the required thickness of the insulation layer. In turn, the reduced overall thickness of the system will allow for easier direct anchoring of the elements of the green facade through the insulating layer to the base of the structure. The research carried out proves that, by using VIP in the insulation system (with a VIP thickness of 30 mm in combination with 20 mm of extruded polystyrene XPS), the thermal insulation properties can be significantly improved and, thus, the thickness of the insulation system can be reduced to 1/3 of the thickness of conventional insulation (while achieving the same thermal resistance), thereby enabling the anchoring of green elements on the surface of such an insulation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.