Providing a 360° view of a given data item especially for sensitive data is essential toward not only protecting the data and associated privacy but also assuring trust, compliance, and ethics of the systems that use or manage such data. With the advent of General Data Protection Regulation, California Data Privacy Law, and other such regulatory requirements, it is essential to support data transparency in all such dimensions. Moreover, data transparency should not violate privacy and security requirements. In this article, we put forward a vision for how data transparency would be achieved in a de-centralized fashion using blockchain technology.
Many studies point to the difficulty of scaling existing computer architectures to meet the needs of an exascale system (i.e., capable of executing 10 18 floating-point operations per second), consuming no more than 20 MW in power, by around the year 2020. This paper outlines a new architecture, the Active Memory Cube, which reduces the energy of computation significantly by performing computation in the memory module, rather than moving data through large memory hierarchies to the processor core. The architecture leverages a commercially demonstrated 3D memory stack called the Hybrid Memory Cube, placing sophisticated computational elements on the logic layer below its stack of dynamic random-access memory (DRAM) dies. The paper also describes an Active Memory Cube tuned to the requirements of a scientific exascale system. The computational elements have a vector architecture and are capable of performing a comprehensive set of floating-point and integer instructions, predicated operations, and gather-scatter accesses across memory in the Cube. The paper outlines the software infrastructure used to develop applications and to evaluate the architecture, and describes results of experiments on application kernels, along with performance and power projections.
The continuing importance of game applications and other numerically intensive workloads has generated an upsurge in novel computer architectures tailored for such functionality. Game applications feature highly parallel code for functions such as game physics, which have high computation and memory requirements, and scalar code for functions such as game artificial intelligence, for which fast response times and a full-featured programming environment are critical. The Cell Broadband Enginee architecture targets such applications, providing both flexibility and high performance by utilizing a 64-bit multithreaded PowerPCt processor element (PPE) with two levels of globally coherent cache and eight synergistic processor elements (SPEs), each consisting of a processor designed for streaming workloads, a local memory, and a globally coherent DMA (direct memory access) engine. Growth in processor complexity is driving a parallel need for sophisticated compiler technology. In this paper, we present a variety of compiler techniques designed to exploit the performance potential of the SPEs and to enable the multilevel heterogeneous parallelism found in the Cell Broadband Engine architecture. Our goal in developing this compiler has been to enhance programmability while continuing to provide high performance. We review the Cell Broadband Engine architecture and present the results of our compiler techniques, including SPE optimization, automatic code generation, single source parallelization, and partitioning.
Developed for multimedia and game applications, as well as other numerically intensive workloads, the CELL processor provides support both for highly parallel codes, which have high computation and memory requirements, and for scalar codes, which require fast response time and a full-featured programming environment. This first generation CELL processor implements on a single chip a Power Architecture processor with two levels of cache, and eight attached streaming processors with their own local memories and globally coherent DMA engines. In addition to processor-level parallelism, each processing element has a Single Instruction Multiple Data (SIMD) unit that can process from 2 double precision floating points up to 16 bytes per instruction. This paper describes, in the context of a research prototype, several compiler techniques that aim at automatically generating high quality codes over a wide range of heterogeneous parallelism available on the CELL processor. Techniques include compiler-supported branch prediction, compiler-assisted instruction fetch, generation of scalar codes on SIMD units, automatic generation of SIMD codes, and data and code partitioning across the multiple processor elements in the system. Results indicate that significant speedup can be achieved with a high level of support from the compiler.
The rise of Java, C#, and other explicitly parallel languages has increased the importance of compiling for different software memory models. This paper describes co-operating escape, thread structure, and delay set analyses that enable high performance for sequentially consistent programs.We compare the performance of a set of Java programs compiled for sequential consistency (SC) with the performance of the same programs compiled for weak consistency. For SC, we observe a slowdown of 10% on average for an architecture based on the Intel Xeon processor, and 26% on average for an architecture based on the IBM Power3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.