An easily machined novel flow field with controllable pressure gradient across adjacent channels was designed and a two dimensional, across-the-channel, twophase model was developed to study the gas transport and water removal of the novel configuration. The effect of channel-rib width ratio, GDL thickness and pressure gradient on the profiles of oxygen concentration and water saturation within the GDL were investigated. Special attention was paid to the mechanisms of the promoted mass transport and water removal rates under a pressure gradient. The model was validated by experiments with various channel-rib ratios and GDL thicknesses at different operating pressure. The results revealed that, oxygen concentration was increased, and the water saturation was reduced under the rib with a pressure gradient generated across the adjacent channels. The optimal pressure gradient is between 0.1 to 0.2 atm for the studied channel geometry and configuration. The mechanisms of the improved cell performance were elucidated. K E Y W O R D S bipolar plates, novel flow fields, PEM fuel cells, pressure gradient, water removal
Desired electrochemical reaction and mass transport rates vary in the operation of PEM fuel cells due to the inhomogeneous spatial distribution of reactants and products. A segmented fuel cell unit was manufactured and a comprehensive model was developed to study the effect of the graded distributions of platinum loading and operating temperature, to simultaneously save the usage of platinum, improve the cell performance and maintain the homogeneity of current density. The increase of temperature towards the cathode outlet improved the reaction kinetics and reduced the liquid water content along the gas flow direction, which decreased the required platinum loading. A large temperature gradient may lead to starvation of oxygen near the cathode outlet due to the dilution of the increased vapor content. A systematical design of the gradients of platinum loading and temperature achieved an improved cell performance and saved the usage of Pt-based catalysts without worsening the homogeneity of current density.
A novel flow field was designed by deploying auxiliary channels inside the partially hollow ribs and drilling a series of arrayed holes on the auxiliary channels. This novel design rationally utilizes the ribs of the current collector and improves the volumetric efficiency of the parallel channels, leading to improved cell performance and homogeneity of current distribution. A three‐dimensional, two‐phase flow model was developed to analyze the influence of a variety of parameters on the oxygen and water saturation profiles, cell performance, and current uniformity. It was found that the combination of auxiliary channels and hole array provides an extra pathway for reactant transport and water removal. A reasonable optimization of the flow field geometry, for example, the hole size, the area ratio of arrayed holes and auxiliary channels, nonuniform distribution of arrayed holes, could further improve the cell performance and current uniformity at an extremely low pressure drop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.