The aberrant self-assembly of human islet amyloid polypeptide (hIAPP) into toxic oligomers, protofibrils, and mature fibrils is associated with the pathogenesis of type 2 diabetes (T2D). Inhibition of hIAPP aggregation and destabilization of preformed hIAPP fibrils are considered as two major therapeutic strategies for treating T2D. Previous experimental studies reported that dopamine prevented the formation of hIAPP oligomers and fibrils. However, the underlying inhibitory mechanism at the atomic level remains elusive. Herein we investigated the conformational ensembles of hIAPP dimer with and without dopamine using replica-exchange molecular dynamics simulations. The simulations demonstrated that dopamine preferentially bound to R11, L12, F15, H18, F23, I26, L27, and Y37 residues, inhibited the formation of β-sheets in the amyloidogenic regions spanning residues 11RLANFLVH18, 22NFGAIL27, and 30TNVGSNT36, and resulted in more disordered hIAPP dimers, thus hindering the amyloid formation of hIAPP. Protonated and deprotonated dopamine molecules displayed distinct binding capabilities but bound to similar residue sites on hIAPP. Additional microsecond molecular dynamics simulations showed that dopamine mainly bound to the β1 and turn regions of hIAPP protofibril and destabilized the protofibril structure. This study not only revealed the molecular mechanism of dopamine toward the inhibition of hIAPP aggregation but also demonstrated the protofibril-destabilizing effects of dopamine, which may be helpful for the design of drug candidates to treat T2D.
Liquid–liquid phase separation (LLPS) is involved in both physiological and pathological processes. The intrinsically disordered protein Tau and its K18 construct can undergo LLPS in a distinct temperature-dependent manner, and the LLPS of Tau protein can initiate Tau aggregation. However, the underlying mechanism driving Tau LLPS remains largely elusive. To understand the temperature-dependent LLPS behavior of Tau at the monomeric level, we explored the conformational ensemble of Tau at different temperatures by performing all-atom replica-exchange molecular dynamic simulation on K18 monomer with an accumulated simulation time of 26.4 μs. Our simulation demonstrates that the compactness, β-structure propensity, and intramolecular interaction of K18 monomer exhibit nonlinear temperature-dependent behavior. 295DNIKHV300/326GNIHHK331/337VEVKSE342 make significant contributions to the temperature dependence of the β propensity of K18 monomer, while the two fibril-nucleating cores display relatively high β propensity at all temperatures. At a specific temperature, K18 monomer adopts the most collapsed state with exposed sites for both persistent and transient interactions. Given that more collapsed polypeptide chains were reported to be more prone to phase separate, our results suggest that K18 monomer inherently possesses conformational characteristics favoring LLPS. Our simulation predicts the importance of 295DNIKHV300/326GNIHHK331/337VEVKSE342 to the temperature-dependent conformational properties of K18, which is corroborated by CD spectra, turbidity assays, and DIC microscopy. Taken together, we offer a computational and experimental approach to comprehend the structural basis for LLPS by amyloidal building blocks.
Fibrillary aggregates of amyloid-β (Aβ) are the pathological hallmark of Alzheimer’s disease (AD). Clearing Aβ deposition or inhibiting Aβ aggregation is a promising approach to treat AD. Experimental studies reported that dopamine (DA), an important neurotransmitter, can inhibit Aβ aggregation and disrupt Aβ fibrils in a dose-dependent manner. However, the underlying molecular mechanisms still remain mostly elusive. Herein, we investigated the effect of DA on Aβ42 protofibrils at three different DA-to-Aβ molar ratios (1:1, 2:1, and 10:1) using all-atom molecular dynamics simulations. Our simulations demonstrate that protonated DA at a DA-to-Aβ ratio of 2:1 exhibits stronger Aβ protofibril disruptive capacity than that at a molar-ratio of 1:1 by mostly disrupting the F4-L34-V36 hydrophobic core. When the ratio of DA-to-Aβ increases to 10:1, DA has a high probability to bind to the outer surface of protofibril and has negligible effect on the protofibril structure. Interestingly, at the same DA-to-Aβ ratio (10:1), a mixture of protonated (DA+) and deprotonated (DA0) DA molecules significantly disrupts Aβ protofibrils by the binding of DA0 to the F4-L34-V36 hydrophobic core. Replica-exchange molecular dynamics simulations of Aβ42 dimer show that DA+ inhibits the formation of β-sheets, K28-A42/K28-D23 salt-bridges, and interpeptide hydrophobic interactions and results in disordered coil-rich Aβ dimers, which would inhibit the subsequent fibrillization of Aβ. Further analyses reveal that DA disrupts Aβ protofibril and prevents Aβ dimerization mostly through π–π stacking interactions with residues F4, H6, and H13, hydrogen bonding interactions with negatively charged residues D7, E11, E22 and D23, and cation−π interactions with residues R5. This study provides a complete picture of the molecular mechanisms of DA in disrupting Aβ protofibril and inhibiting Aβ aggregation, which could be helpful for the design of potent drug candidates for the treatment/intervention of AD.
Patients with Alzheimer's disease (AD) have a high risk of developing Type II diabetes (T2D). The co-aggregation of the two disease-related proteins, Aβ and hIAPP, has been proposed as a potential molecular mechanism. However, the detailed Aβ−hIAPP interactions and structural characteristics of co-aggregates are mostly unknown at atomic level. Here, we explore the conformational ensembles of the Aβ−hIAPP heterodimer and Aβ or hIAPP homodimer by performing all-atom explicit-solvent replica exchange molecular dynamic simulations. Our simulations show that the interaction propensity of Aβ−hIAPP in the heterodimer is comparable with that of Aβ−Aβ/hIAPP−hIAPP in the homodimer. Similar hot spot residues of Aβ/hIAPP in the homodimer and heterodimer are identified, indicating that both Aβ and hIAPP have similar molecular recognition sites for self-aggregation and co-aggregation. Aβ in the heterodimer possesses three high β-sheet probability regions: the N-terminal region E3−H6, the central hydrophobic core region K16−E22, and the C-terminal hydrophobic region I31−A41, which is highly similar to Aβ in the homodimer. More importantly, in the heterodimer, the regions E3−H6, F19−E22, and I31−M35 of Aβ and the amyloid core region N20−T30 of hIAPP display higher β-sheet probability than they do in homodimer, implying their crucial roles in the formation of βsheet-rich co-aggregates. Our study sheds light on the co-aggregation of Aβ and hIAPP at an atomic level, which will be helpful for an in-depth understanding of the molecular mechanism for epidemiological correlation of AD and T2D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.