Mercury is a potent neurotoxin that poses health risks to the global population. Anthropogenic mercury emissions to the atmosphere are projected to decrease in the future due to enhanced policy efforts such as the Minamata Convention, a legally-binding international treaty entered into force in 2017. Here, we report the development of a comprehensive climate-atmosphere-land-ocean-ecosystem and exposure-risk model framework for mercury and its application to project the health effects of future atmospheric emissions. Our results show that the accumulated health effects associated with mercury exposure during 2010–2050 are $19 (95% confidence interval: 4.7–54) trillion (2020 USD) realized to 2050 (3% discount rate) for the current policy scenario. Our results suggest a substantial increase in global human health cost if emission reduction actions are delayed. This comprehensive modeling approach provides a much-needed tool to help parties to evaluate the effectiveness of Hg emission controls as required by the Minamata Convention.
An efficient, atom-economic one-pot method was developed for the preparation of 7-substituted indoles via rhodium(III)-catalyzed oxidative cross-coupling. Regioselective olefination of indoline derivatives followed by one-pot subsequent oxidation provided the desired products in good to excellent yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.