In this letter, we consider the varying detection environments to address the problem of detecting small targets within sea clutter. We first extract three simple yet practically discriminative features from the returned signals in the time and frequency domains and then fuse them into a 3-D feature space. Based on the constructed space, we then adopt and elegantly modify the support vector machine (SVM) to design a learningbased detector that enfolds the false alarm rate (FAR). Most importantly, our proposed detector can flexibly control the FAR by simply adjusting two introduced parameters, which facilitates to regulate detector's sensitivity to the outliers incurred by the sea spikes and to fairly evaluate the performance of different detection algorithms. Experimental results demonstrate that our proposed detector significantly improves the detection probability over several existing classical detectors in both low signal to clutter ratio (SCR) (up to 58%) and low FAR (up to 40%) cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.