Target following plays an important role in oceanic detection and target capturing for autonomous underwater vehicles. Due to the model nonlinearity and external disturbance, the dynamic model of a portable autonomous underwater vehicle was usually established with parameter uncertainties. In this article, a petri-based recurrent type 2 fuzzy neural network has been built to approximate the unknown autonomous underwater vehicle dynamics. The type 2 fuzzy logic system has been applied to the network to improve the approximation accuracy for systematic nonlinearity, and the petri layer in the network can improve estimation speed and reduce energy consumption. A petri-based recurrent type 2 fuzzy neural network-based adaptive robust controller has been proposed for target tracking. In the offshore experiments, the proposed controller has not only realized stable position and pose control but also successfully followed mobile target on the surface. In the tank underwater experiments, the pipeline target has been successfully followed to further verify the controller performance.
SummaryThis paper presents a hybrid strategy-based coordinate controller with a novel nonlinear disturbance observer for autonomous underwater vehicle manipulator systems (UVMSs). This method can reduce the influence from external unknown disturbances, inner coupling effects and model uncertainties by using a modified disturbance observer. Considering the natural redundancy property of the UVMS, the redundancy resolution algorithm is often utilized to give desired trajectories in the vehicle–joint space. However, because of the calibration errors, assembling errors and numerical errors, these desired trajectories may not lead the end-effector to the goal point accurately. To realize accurate motion control even when small errors exist in the planning phase, a hybrid strategy is introduced to transform the controller in the joint–vehicle space to the controller in the task space. Numerical simulations based on a UVMS have been carried out to testify the effectiveness of the proposed coordinate controller and the hybrid strategy. During the simulations, unknown disturbances are exerted upon the system. The trajectory tracking and error fixing performances are discussed in comparative analyses. The controller also maintains robust characteristics in comparison with the passivity-based controller and the proposed controller but without the disturbance observer. Experiments are also carried out to test its performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.