Ab initio restricted Hartree-Fock method coupled with the large unit cell method is used to determine the electronic structure and physical properties of aluminum phosphide (AlP) nanocrystals between 216 and 1000 atoms with sizes ranging up to about 3 nm in diameter. Core and surface parts with different sizes are investigated. Investigated properties include total energy, cohesive energy, energy gap, valence band width, ionicity, and degeneracy of energy levels. The oxygenated (001)-(1 × 1) facet that expands with larger sizes of nanocrystals is investigated to determine the rule of the surface in nanocrystals electronic structure. Results revealed that electronic properties converge to some limit as the size of the large unit cell increases and that the 216 core atoms approaches bulk of Aluminum phosphide material in several properties. Increasing nanocrystals size also resulted in a decrease in lattice constant, increase of core cohesive energy (absolute value), increase of core energy gap, increase of core valence band width and decrease of ionicity. Valence and conduction bands are wider on the surface due to splitting and oxygen atoms. The method also shows fluctuations in the converged energy gap, valence band width and cohesive energy of core part of nanocrystals duo to shape variation.
This paper proposed a theoretical treatment to study underwater wireless optical communications (UWOC) system with different modulation schemes by multiple input-multiple output (MIMO) technology in coastal water. MIMO technology provides high-speed data rates with longer distance link. This technique employed to assess the system by BER, Q. factor and data rate under coastal water types. The reliability of the system is examined by the techniques of 1Tx/1Rx, 2Tx/2Rx, 3Tx/3Rx and 4Tx/4Rx. The results shows the proposed technique by MIMO can get the better performance compared with the other techniques in terms of BER. Theoretical results were obtained to compare between PIN and APD photodetectors. Besides, 32-PPM is robust and considers a suitable modulation scheme for obtaining the low BER and high Q. factor in LoS scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.