The formation of long-term memory is critical for learning ability and social behaviors of humans and animals, yet its underlying mechanisms are largely unknown. We found that the efficacy of hippocampus-dependent memory consolidation is regulated by METTL3, an RNA N6-methyladenosine (m6A) methyltransferase, through promoting the translation of neuronal early-response genes. Such effect is exquisitely dependent on the m6A methyltransferase function of METTL3. Depleting METTL3 in mouse hippocampus reduces memory consolidation ability, yet unimpaired learning outcomes can be achieved if adequate training was given or the m6A methyltransferase function of METTL3 was restored. The abundance of METTL3 in wild-type mouse hippocampus is positively correlated with learning efficacy, and overexpression of METTL3 significantly enhances long-term memory consolidation. These findings uncover a direct role of RNA m6A modification in regulating long-term memory formation, and also indicate that memory efficacy difference among individuals could be compensated by repeated learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.