Wireless sensor networks (WSNs) are often deployed in harsh and unattended environments, which may cause the generation of abnormal or low quality data. The inaccurate and unreliable sensor data may increase generation of false alarms and erroneous decisions, so it’s very important to detect outliers in sensor data efficiently and accurately to ensure sound scientific decision-making. In this paper, an outlier detection algorithm (TSVDD) using model selection-based support vector data description (SVDD) is proposed. Firstly, the Toeplitz matrix random feature mapping is used to reduce the time and space complexity of outlier detection. Secondly, a novel model selection strategy is realized to keep the algorithm stable under the low feature dimensions, this strategy can select a relatively optimal decision model and avoid both under-fitting and overfitting phenomena. The simulation results on SensorScope and IBRL datasets demonstrate that, TSVDD achieves higher accuracy and lower time complexity for outlier detection in WSNs compared with existing methods.
With the rapid development of the computer and sensor field, inertial sensor data have been widely used in human activity recognition. At present, most relevant studies divide human activities into basic actions and transitional actions, in which basic actions are classified by unified features, while transitional actions usually use context information to determine the category. For the existing single method that cannot well realize human activity recognition, this paper proposes a human activity classification and recognition model based on smartphone inertial sensor data. The model fully considers the feature differences of different properties of actions, uses a fixed sliding window to segment the human activity data of inertial sensors with different attributes and, finally, extracts the features and recognizes them on different classifiers. The experimental results show that dynamic and transitional actions could obtain the best recognition performance on support vector machines, while static actions could obtain better classification effects on ensemble classifiers; as for feature selection, the frequency-domain feature used in dynamic action had a high recognition rate, up to 99.35%. When time-domain features were used for static and transitional actions, higher recognition rates were obtained, 98.40% and 91.98%, respectively.
Low-rank decomposition models have potential for fabric defect detection, where a feature matrix is decomposed into a low-rank matrix that corresponding to repeated texture structure and a sparse matrix that represent defective regions. Two limitations, however, still exist. First, previous work might fail to detect some large homogeneous defective block. Second, when the background and defective regions are relatively coherent or the texture of fabric image is complex, it is difficult to use previous methods to separate them. To deal with these problems, a new weighted low-rank decomposition model with Laplace regularization (WLRL) is proposed in this paper: (1) a weighted low-rank decomposition model that can decompose the original image into background and defective regions, and (2) a Laplace regularization that can enlarge the distance between the background and the defective regions. The performance of the proposed method WLRL is evaluated on the box- and star-patterned fabric databases, and superior results are shown compared with state-of-the-art methods, that is, 98.70% ACC (accuracy) and 72.83% TPR (true positive rate) for box-patterned fabrics, 99.09% ACC (accuracy) and 83.63% TPR (true positive rate) for star-patterned fabrics.
Gait, as a kind of biological feature, has a profound value in personnel identification. This paper analyzes gait characteristics based on acceleration sensors of smart phones and proposes a new gait recognition method. First, in view of the existing methods in the process of extraction of gait features, a large number of redundant calculations, cycle detection error, and the phase deviation issue during the week put forward the Shape Context (SC) and Linear Time Normalized (LTN) combining SCLTN calibration method of gait cycle sequence matching, to represent the whole extract typical gait cycle gait. In view of the existing extracted gait features are still some conventional features; the velocity change of relatively uniform acceleration and the change of acceleration per unit time are proposed as new features. Secondly, combining new features with traditional features to form a new feature is set for training alternative feature set, from which the training time and recognition effect of multiple classifiers are screened. Finally, a new multiclassifier fusion method, Multiple Scale Voting (MSV), is proposed to fuse the results of Multiple classifiers to obtain the final classification results. In order to verify the performance of the proposed method, gait data of 32 testers are collected. The final experimental results show that the new feature has good separability, and the recognition rate of fusion feature set after MSV algorithm is 98.42%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.