High‐quality perovskite single crystals with large size are highly desirable for the fundamental research and high energy detection application. Here, a simple and convenient solution method, featuring continuous‐mass transport process (CMTP) by a steady self‐supply way, is shown to keep the growth of semiconductor single crystals continuously stable at a constant growth rate until an expected crystal size is achieved. A significantly reduced full width at half‐maximum (36 arcsec) of the (400) plane from the X‐ray rocking curve indicates a low angular dislocation of 6.8 × 106 cm−2 and hence a higher crystalline quality for the CH3NH3PbI3(MAPbI3) single crystals grown by CMTP as compared to the conventional inverse temperature crystallization (ITC) method. Furthermore, the CMTP‐based single crystals have lower trap density, reduced by nearly 200% to 4.5 × 109 cm−3, higher mobility increased by 187% to 150.2 cm2 V−1 s−1, and higher mobility–lifetime product increased by around 450% to 1.6 × 10−3 cm2 V−1, as compared with the ITC‐grown reference sample. The high performance of the CMTP‐based MAPbI3 X‐ray detector is comparable to that of a traditional high‐quality CdZnTe device, indicating the CMTP method as being a cost‐efficient strategy for high‐quality electronic‐grade semiconductor single crystals.
MicroRNAs (miRNAs) are a class of highly conserved, single-stranded RNA molecules (length, 18–25 nt) that regulate the expression of their target mRNAs. Previous studies have demonstrated that miRNAs may be novel biomarkers in the diagnosis of certain diseases. In order to evaluate the diagnostic value of miRNAs in childhood tuberculosis (TB), the circulating miRNA profile was determined using microarray analysis. An miRNA-gene network was constructed to identify closely associated miRNAs and these miRNAs were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A receiver operational curve (ROC) was used to evaluate the diagnostic sensitivity and specificity of confirmed miRNAs. The microarray data demonstrated that 29 miRNAs were altered with 15 upregulated and 14 downregulated. The network showed indicated 14 miRNAs that are critical in childhood TB. RT-qPCR validated that miR-1, miR-155, miR-31, miR-146a, miR-10a, miR-125b and miR-150 were downregulated in while miR-29 was upregulated in children with TB compared with uninfected children. The ROC curve data indicated the diagnostic value of single miRNA was as follows: miR-150>miR-146a>miR-125b>miR-31>miR-10a>miR-1>miR-155>miR-29. Notably, a combination of these miRNAs exhibited increased diagnostic value compared with any single miRNA. To the best of our knowledge, the present study is the first to identify the expression profile of circulating miRNAs in childhood TB and demonstrated that miRNAs may be a novel, non-invasive and effective biomarker for the early diagnosis of childhood TB.
To investigate whether gut microbiota is associated with vitamin A nutritional levels in children with persistent diarrhea, a total of 59 pediatric patients with persistent diarrhea aged 1–12 months were selected from the Department of Gastroenterology at the Children’s Hospital of Chongqing Medical University, China. Subjects were hospitalized and divided into VA-deficient (n = 30) and VA-normal (n = 29) groups according to their venous serum retinol levels. Fecal samples from all 59 subjects were collected immediately after admission and analyzed by Illumina MiSeq for 16S rRNA genes to characterize the overall microbiota of the samples. The gut microbiota of the VA-deficient and VA-normal groups were compared using a bioinformatic statistical approach. The Shannon index (p = 0.02), Simpson index (p = 0.01) and component diagram data indicated significantly lower diversity in the VA-deficient than the VA-normal group. A metagenome analysis (LEfSe) and a differentially abundant features approach using Metastats revealed that Escherichia coli and Clostridium butyricum were the key phylotypes of the VA-normal group, while Enterococcus predominated the VA-deficient group. In conclusion, the diversity of gut microbiota and the key phylotypes are significantly different in children with persistent diarrhea at different VA nutritional levels.
In children, sequential therapy appears to be superior to triple therapy for H. pylori eradication, although the eradication rates remain lower than the expected goal with both treatments. Factors-associated with a higher risk of eradication failure, such as compliance and antimicrobial resistance, remain insufficiently investigated. Therefore, further high-quality RCTs are needed to compare these different eradication treatment approaches.
microRNAs (miRNAs) are small noncoding RNAs that modulate gene expression at the posttranscriptional level, playing an important role in many diseases. However, reports concerning the role of miRNA in hepatitis B virus (HBV) infection are limited. miRNA chips were used to investigate miRNA changes during HBV infection in vitro. Bioinformatics analysis was used to explore possible miRNA and target genes during HBV infection. The expression of miR-125b and its potential target gene, sodium channel, non-voltage-gated 1 alpha (SCNN1A), was further analyzed. A total of 136 miRNAs were analyzed in an HBV transient transfection model (HepG2-HBV1.3), and 78 miRNAs were differentially expressed in HepG2.2.15 cells compared with HepG2 cells. miR-125b expression was decreased in both HepG2-HBV1.3 and HepG2.2.15 cells, and ectopic expression of miR-125b inhibited HBV DNA intermediates and secretion of HBsAg and HBeAg. miR-125b also inhibited the mRNA and protein levels of SCNN1A. Using a dual luciferase reporter system, we found that SCNN1A was one of the targets of miR-125b. In this study, we found that miR-125b inhibits HBV expression in vitro by regulating SCNN1A expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.