Summary Over a 2‐year period we have identified pollen grains from 48 families of grasses, as well as mould spores and mite particles during air sampling in Guangxi Province. The major aeroallergens were Artemisia, Moraceae and Euophoribiacea, and the spores of Aspergillus, Penicillinum, Cephalosporium and Helminthosporium. Mites were probably also one of the major outdoor aeroallergens. Our investigations also included inspection of the vegetation of the geographical area involved, as well as skin testing on 774 subjects using extracts of 37 aeroallergens. We believe that this work has provided fundamental information on seasonal allergy in Southern China and South‐east Asia.
Large language model-based (LLM) agents are emerging as a powerful enabler of robust embodied intelligence due to their capability of planning complex action sequences. Sound planning ability is necessary for robust automation in many task domains, but especially in surgical automation. These agents rely on a highly detailed natural language representation of the scene. Thus, to leverage the emergent capabilities of LLM agents for surgical task planning, developing similarly powerful and robust perception algorithms is necessary to derive a detailed scene representation of the environment from visual input. Previous research has focused primarily on enabling LLM-based task planning while adopting simple yet severely limited perception solutions to meet the needs for bench-top experiments but lack the critical flexibility to scale to less constrained settings. In this work, we propose an alternate perception approach -a digital twin-based machine perception approach that capitalizes on the convincing performance and out-of-the-box generalization of recent vision foundation models. Integrating our digital twin-based scene representation and LLM agent for planning with the dVRK platform, we develop an embodied intelligence system and evaluate its robustness in performing peg transfer and gauze retrieval tasks. Our approach shows strong task performance and generalizability to varied environment settings. Despite convincing performance, this work is merely a first step towards the integration of digital twin-based scene representations. Future studies are necessary for the realization of a comprehensive digital twin framework to improve the interpretability and generalizability of embodied intelligence in surgery.
Vision-based segmentation of the robotic tool during robotassisted surgery enables downstream applications, such as augmented reality feedback, while allowing for inaccuracies in robot kinematics. With the introduction of deep learning, many methods were presented to solve instrument segmentation directly and solely from images. While these approaches made remarkable progress on benchmark datasets, fundamental challenges pertaining to their robustness remain. We present CaRTS, a causality-driven robot tool segmentation algorithm, that is designed based on a complementary causal model of the robot tool segmentation task. Rather than directly inferring segmentation masks from observed images, CaRTS iteratively aligns tool models with image observations by updating the initially incorrect robot kinematic parameters through forward kinematics and differentiable rendering to optimize image feature similarity end-to-end. We benchmark CaRTS with competing techniques on both synthetic as well as real data from the dVRK, generated in precisely controlled scenarios to allow for counterfactual synthesis.On training-domain test data, CaRTS achieves a Dice score of 93.4 that is preserved well (Dice score of 91.8) when tested on counterfactually altered test data, exhibiting low brightness, smoke, blood, and altered background patterns. This compares favorably to Dice scores of 95.0 and 62.8, respectively, of a purely image-based method trained and tested on the same data. Future work will involve accelerating CaRTS to achieve video framerate and estimating the impact occlusion has in practice. Despite these limitations, our results are promising: In addition to achieving high segmentation accuracy, CaRTS provides estimates of the true robot kinematics, which may benefit applications such as force estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.