Biomass materials have received attention for energy storagebecaused of the advantage of low-cost, easy-to-prepare, and eco-friendliness. Three-dimensional carbon materialswith abundant pore structure gradually becomeresearch hotspot in high-performance energy storage. In this study, an easy-to-prepare, green, light and elastic activated carbon was present using the biomass Juncus effusus (JCE) via high-temperature pyrolysis, followed by activation in air. Compared with previously reported bio-carbons, the proposed air-activated bio-carbon contributes in the fabrication of pores to preserve the interconnected, reticular and tubular structure. Moreover, the interconnected porous material also inherits the excellent tenacity of the original JCE such as the material can be bended to below 90 o under an external force while maintaining structural integrity. The activated porous carbon material exhibits an enhanced electric double-layer capacitance (~210 F g -1 at 1 A g -1 ), with capacitance retention of ~78.62% at 10 A g -1 . The interconnected porous carbon microtubes electrode as a double-layer symmetric capacitor exhibits considerable capacitance retention (84%) after 2000 cycles at 1 A g -1 . The improved energy storage performance was proposed to be attributed to the shortened ionic diffusion distance and sufficient contact between the interface of the carbon electrode and electrolyte, which is resulted from the elastic, undamaged structure and types of pores. These results demonstrated that as-preparedcarbon materials have potentional application in symmetric capacitors.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.