For uplink large-scale MIMO systems, minimum mean square error (MMSE) algorithm is near-optimal but involves matrix inversion with high complexity. In this paper, we propose to exploit the Gauss-Seidel (GS) method to iteratively realize the MMSE algorithm without the complicated matrix inversion. To further accelerate the convergence rate and reduce the complexity, we propose a diagonal-approximate initial solution to the GS method, which is much closer to the final solution than the traditional zero-vector initial solution. We also propose a approximated method to compute log-likelihood ratios (LLRs) for soft channel decoding with a negligible performance loss. The analysis shows that the proposed GS-based algorithm can reduce the computational complexity from O(K 3 ) to O(K 2 ), where K is the number of users. Simulation results verify that the proposed algorithm outperforms the recently proposed Neumann series approximation algorithm, and achieves the near-optimal performance of the classical MMSE algorithm with a small number of iterations.Index Terms-Large-scale MIMO, signal detection, minimum mean square error (MMSE), Gauss-Seidel (GS) method, low complexity.
The low-resolution analog-to-digital convertor (ADC) is a promising solution to significantly reduce the power consumption of radio frequency circuits in massive multiple-input multiple-output (MIMO) systems. In this letter, we investigate the uplink spectral efficiency (SE) of massive MIMO systems with low-resolution ADCs over Rician fading channels, where both perfect and imperfect channel state information are considered. By modeling the quantization noise of low-resolution ADCs as an additive quantization noise, we derive tractable and exact approximation expressions of the uplink SE of massive MIMO with the typical maximal-ratio combining (MRC) receivers. We also analyze the impact of the ADC resolution, the Rician K-factor, and the number of antennas on the uplink SE. Our derived results reveal that the use of low-cost and low-resolution ADCs can still achieve satisfying SE in massive MIMO systems.Index Terms-Analog-to-digital convertor (ADC), massive MIMO, Rician fading channels, spectral efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.