The programmed cell death-1 (PD-1)/PD-ligand 1 (PD-L1) pathway is critical for normal pregnancy by promoting regulatory T (Treg) cell development and inhibiting the Th17 response. However, the relationship between the PD-1/PD-L1 pathway and the Treg/Th17 imbalance in pre-eclampsia (PE) is an enigma. In this study, decreased PD-1 and PD-L1 expression and a Treg/Th17 imbalance were observed at the maternal-fetal interface in PE. The regulatory effects of the PD-1/PD-L1 pathway on the Treg and Th17 cell quantities were determined in vitro by targeting T-cell proliferation, differentiation and transdifferentiation. First, decreased PD-1 expression might contribute to a higher Th17 cell frequency by promoting proliferation in PE. Second, the percentages of Treg but not Th17 cells differentiated from peripheral naive CD4 T cells were increased by PD-L1 Fc administration. This effect was accompanied by decreased PI3K/AKT/m-TOR and increased PTEN mRNA expression and was completely reversed by PD-1 blockade. Finally, the percentage of IL-17-producing Treg cells increased and was positively associated with the Th17 cell frequency in PE. Increased RORγt and IL-17 but not Foxp3 and IL-10 mRNA expression by Treg cells was observed with PD-1 blockade. Similar findings occurred when Treg cells were exposed to IL-6/IL-23/IL-1β and were reversed by PD-L1 Fc. Taken together, our findings indicate that the PD-1/PD-L1 pathway contributes to the Treg/Th17 imbalance via 'one-two punch' approaches: (i) promoting Th17 cell proliferation, (ii) inhibiting Treg cell differentiation and (iii) enhancing Treg cell plasticity into Th17 cells in PE. The therapeutic value of PD-L1 Fc for PE treatment will be explored in the future.
The programmed cell death-1(PD-1)/PD-ligand 1 (PD-L1) pathway is critical to immune homeostasis by promoting regulatory T (Treg) development and inhibiting effector T (such as Th17) cell responses. However, the association between the PD-1/PD-L1 pathway and the Treg/Th17 imbalance has not been fully investigated in pre-eclampsia (PE). In this study, we observed an inverse correlation between the percentages of Treg and Th17 cells, and the expression of PD-1 and PD-L1 on the two subsets also changed in PE compared with normal pregnancy. We further explored their relationship in vivo using the L-NG-Nitroarginine Methyl Ester (L-NAME) induced PE-like rat models, also characterized by Treg/Th17 imbalance. Administration of PD-L1-Fc protein provides a protective effects on the pre-eclamptic models, both to the mother and the fetuses, by reversing Treg/Th17 imbalance through inhibiting PI3K/AKT/m-TOR signaling and enhancing PTEN expression. In addition, we also observed a protective effect of PD-L1-Fc on the placenta by reversing placental damages. These results suggested that altered PD-1/PD-L1 pathway contributed to Treg/Th17 imbalance in PE. Treatment with PD-L1-Fc posed protective effects on pre-eclamptic models, indicating that the use of PD-L1-Fc might be a potential therapeutic target in PE treatment.
Pregnancy presents a great challenge to the maternal immune system. Given that maternal alloreactive lymphocytes are not depleted during pregnancy, local and/or systemic mechanisms have to serve a central function in altering the maternal immune responses. Regulatory T cells (Tregs) and the PD-1/PD-L1 pathway are both critical in controlling the immune responses. Recent studies have proved the critical function of the PD-1/PD-L1 pathway in regulating the T-cell homeostasis and the peripheral tolerance through promoting the development and function of Tregs, and inhibiting the activation of effector T cells. The function of the PD-1/PD-L1 pathway in feto-maternal interface and pregnancy has been investigated in human and animal models of pregnancy. In this review, we provide recent insight into the role of the PD-1/PD-L1 pathway in regulating T-cell homeostasis, maternal tolerance, and pregnancy-related complications as well as its possible applicability in clinical immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.