Macroautophagy/autophagy has profound implications for aging. However, the true features of autophagy in the progression of aging remain to be clarified. In the present study, we explored the status of autophagic flux during the development of cell senescence induced by oxidative stress. In this system, although autophagic structures increased, the degradation of SQSTM1/p62 protein, the yellow puncta of mRFP-GFP-LC3 fluorescence and the activity of lysosomal proteolytic enzymes all decreased in senescent cells, indicating impaired autophagic flux with lysosomal dysfunction. The influence of autophagy activity on senescence development was confirmed by both positive and negative autophagy modulators; and MTOR-dependent autophagy activators, rapamycin and PP242, efficiently suppressed cellular senescence through a mechanism relevant to restoring autophagic flux. By time-phased treatment of cells with the antioxidant N-acetylcysteine (NAC), the mitochondria uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and ambroxol, a reagent with the effect of enhancing lysosomal enzyme maturation, we found that mitochondrial dysfunction plays an initiating role, while lysosomal dysfunction is more directly responsible for autophagy impairment and senescence. Interestingly, the effect of rapamycin on autophagy flux is linked to its role in functional revitalization of both mitochondrial and lysosomal functions. Together, this study demonstrates that autophagy impairment is crucial for oxidative stressinduced cell senescence, thus restoring autophagy activity could be a promising way to retard senescence.
Summary AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress‐induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide‐induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP‐RFP‐LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD + levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD + synthesis. In addition, the mechanistic relationship of autophagic flux and NAD + synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress‐induced senescence by improving autophagic flux and NAD + homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD + homeostasis, and it is also valuable in the development of innovative strategies to combat aging.
BackgroundExcessive circular fatty acid, particlarly saturated fatty acid, can result in insulin resistance in skeletal muscle, but other adverse effects of fatty acid accumulation in myocytes remain unclear.MethodsDifferentiated C2C12 myotubes were used. The effects of palmitate on cell viability, glucose uptake, gene expression and myotube loss were evaluated by MTT assay, 2NBDG uptake, qRT-PCR, Western Blot and crystal staining-based myotube counting, respectively. In some expreiments, oleate was administrated, or the inhibitors of signaling pathways were applied.ResultsPalmitate-induced cellular insulin resistance was clarified by the reduced Akt phosphorylation, glucose uptake and Glut4 expression. Palmitate-caused myotube loss was clearly observed under microscope and proved by myotube counting and expression analysis of myotube marker genes. Moreover, palmitate-induced transcriptional suppression of three health benefit myokine genes (FNDC5, CTRP15 and FGF21) was found, and the different involvement of p38 and PI3K in the transcription of these genes was noticed.ConclusionsPalmitate-induced insulin resistance accompanys myotube loss and the impaired expression of FNDC5, CTRP15 and FGF21genes in C2C12 myotubes. These results provide novel evidence indicating the negative role of high concentration of palmitate in myotubes.
The effects of hydroxyapatite nanoparticles (HA-NPs) on two kinds of cells, human MG63 cells and the normal osteoblasts were investigated. According to the MTT assay and fluorescent staining assay, it was proved that HA-NPs could inhibit the growth of MG63 cells but slightly support proliferation of the osteoblasts. Meanwhile, transmission electron microscopy (TEM) was employed to observe the ultrastructural alterations of both cells. The TEM results showed that HA-NPs had entered the two kinds of cells. Typical apoptosis was observed in the MG63 cells, especially in the group of 250 μg/mL with 5 days culture. While no apoptosis could be found in the normal osteoblasts at any concentration group of HA-NPs. Our results suggested that the HA-NPs had selective effects to different kinds of cells: supporting proliferation to the normal bone cells while causing apoptosis to the osteosarcoma cells.
The leaf vein traits of plants result partially from adaptations to environmental factors during the longterm evolution. However, no general conclusion on the variation trend of the vein density along a climate gradient or the response of such vein density-climate relationship pattern to climate changes has been made. We examined the variations in leaf vein density and other leaf traits of oriental oak (Quercus variabilis) in 10 in situ populations (in situ populations) across temperate-subtropical biomes and the response of the leaf vein density to environmental changes in 7 populations grown in a common garden (garden populations). The results show that the minor vein density of the in situ populations (C3rd order) significantly decreased with increasing latitude (r 2 = 0.44 and P = 0.04). This pattern remained unchanged for the garden populations (r 2 = 0.67 and P = 0.02). The minor vein densities of both the garden and in situ populations were positively correlated to the mean annual temperature (MAT) of the origins (r 2 = 0.66 and P = 0.03 for the garden populations; r 2 = 0.37 and P = 0.06 for the in situ populations), but their correlation to the mean annual precipitation (MAP) of the origins was not significant. Compared with the MAT and MAP, the vein density displayed a significantly lower correlation to climate variables in the current year or the current-year growing seasons. For the garden populations, the minor vein density significantly increased with leaf dry mass per area and decreased with petiole length and leaf length. These results imply that leaf vein density is genotypically fixed and is therefore not responsive to temporal changes in the growing conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.