Gelatinous underwater invertebrates such as jellyfish have organs that are transparent, luminescent and self-healing, which allow the creatures to navigate, camouflage themselves and, indeed, survive in aquatic environments. Artificial luminescent materials that can mimic such functionality can be used to develop aquatic wearable/stretchable displays and water-resistant devices. Here, a luminescent composite that is simultaneously transparent, tough and can autonomously self-heal in both dry and wet conditions is reported. A tough, self-healable fluorine elastomer with dipole–dipole interactions is synthesized as the polymer matrix. It exhibits excellent compatibility with metal halide perovskite quantum dots. The composite possesses a toughness of 19 MJ m−3, maximum strain of 1300% and capability to autonomously self-heal underwater. Notably, the material can withstand extremely harsh aqueous conditions, such as highly salty, acidic (pH = 1) and basic (pH = 13) environment for more than several months with almost no decay in mechanical performance or optical properties.
Flexible bioelectronics have attracted increasing research interests due to their wide range of potential applications in human motion detection, personal healthcare monitoring, and medical diagnosis. Recently, design and fabrication strategies integrated with mussel-inspired polydopamine (PDA) have demonstrated many appealing properties, which meet the structural and functional requirements of high-performance flexible bioelectronics. The inherent multiple reactive sites and hierarchical interactions within PDA can promote the total electrochemical activities, self-healing, surface activation, and biocompatibility of the composite system. This review paper strives to provide a comprehensive overview on this emerging area, including the fabrication methodology, the structural and functional contributions of PDA on the whole composites, and various applications of PDA-based flexible bioelectronics. The current challenges and future outlook in this field are also extensively discussed at the end. This paper aims to serve as a guideline in this emerging area and provide new inspirations toward next-generation integrated multifunctional flexible PDA bioelectronics with a broad range of healthcare applications.
Rapid underwater self-healing elastomers with high mechanical strength at ambient temperature are highly desirable for dangerous underwater operations. However, current room temperature self-healing materials have shortcomings, such as low healing strength (below megapascal), long healing time (hours), and decay of healing functions in harsh environments (salty, acidic, and basic solutions), limiting their practical applications. Herein, it is introduced water-stable Debye forces and high-density nano-sized physical crosslinking into one network to achieve a stiff yet rapid self-healing elastomer that can work in harsh aqueous environments. The obtained elastomer possesses a high Young's modulus of 48 MPa (24 times than that of natural elastomer), and it can achieve 90% of maximum mechanical strength healing for 10 s at ambient temperature in all types of harsh aqueous conditions, outperforming three orders of magnitudes in healing speed of reported roomtemperature self-healing elastomers with Young's modulus over 10 MPa. The new stiff yet rapidly healable elastomers have great potential in emergent repair in urgent and dangerous cases.
Ligaments are flexible and stiff tissues around joints to support body movements, showing superior toughness and fatigue-resistance. Such a combination of mechanical properties is rarely seen in synthetic elastomers because stretchability, stiffness, toughness, and fatigue resistance are seemingly incompatible in materials design. Here we resolve this long-standing mismatch through a hierarchical crosslinking design. The obtained elastomer can endure 30,000% stretch and exhibit a Young’s modulus of 18 MPa and toughness of 228 MJ m−3, outperforming all the reported synthetic elastomers. Furthermore, the fatigue threshold is as high as 2,682 J m−2, the same order of magnitude as the ligaments (~1,000 J m−2). We reveal that the dynamic double-crosslinking network composed of Li+-O interactions and PMMA nanoaggregates allows for a hierarchical energy dissipation, enabling the elastomers as artificial ligaments in soft robotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.