Ionic conductors
that combine transparency, elasticity, and underwater
self-healing capability are highly desirable because of their applications
in biosensors, touch panels, marine ships, and so forth. Polymer materials
based on ion–dipole interactions can meet these requirements.
However, a key trade-off is their relatively weak mechanical properties
because of the plasticizing effect. Here, we designed and synthesized
a new ionic liquid building block to enable a new design of multivalent
ion–dipole interaction. The resultant ion–dipole polymer
complex not only enhances the Young’s modulus by more than
3 times but also possesses much better elasticity, without any sacrifice
on the ionic conductivity or self-healing capability.
Cervical cancer is one of the most common gynecological tumors, and the majority of early-stage cervical cancer patients achieve good recovery through surgical treatment and concurrent chemoradiotherapy (CCRT). However, for patients with recurrent, persistent, metastatic cervical cancer, effective treatment is rare, except for bevacizumab combined with chemotherapy. Programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) inhibitors might be a novel choice to improve the clinical outcomes of these patients. Thus far, some pivotal trials, including Keynote 028, Keynote 158 and Checkmate 358, have indicated established clinical benefit of PD-1/PD-L1 inhibitors in cervical cancer. In light of these data, the FDA has approved pembrolizumab for patients with recurrent or metastatic cervical cancer with disease progression during or after chemotherapy. There are also some ongoing studies that may provide more evidence for the PD-1/PD-L1 pathway as a therapeutic target in cervical cancer. In this review, we have summarized the status and application of PD-1/PD-L1 inhibitors in clinical trials for the treatment of cervical cancer and suggested some future directions in this field.
Gelatinous underwater invertebrates such as jellyfish have organs that are transparent, luminescent and self-healing, which allow the creatures to navigate, camouflage themselves and, indeed, survive in aquatic environments. Artificial luminescent materials that can mimic such functionality can be used to develop aquatic wearable/stretchable displays and water-resistant devices. Here, a luminescent composite that is simultaneously transparent, tough and can autonomously self-heal in both dry and wet conditions is reported. A tough, self-healable fluorine elastomer with dipole–dipole interactions is synthesized as the polymer matrix. It exhibits excellent compatibility with metal halide perovskite quantum dots. The composite possesses a toughness of 19 MJ m−3, maximum strain of 1300% and capability to autonomously self-heal underwater. Notably, the material can withstand extremely harsh aqueous conditions, such as highly salty, acidic (pH = 1) and basic (pH = 13) environment for more than several months with almost no decay in mechanical performance or optical properties.
The expanding CRISPR-Cas9 technology is an easily accessible, programmable, and precise gene-editing tool with numerous applications, most notably in biomedical research. Together with advancements in genome and transcriptome sequencing in the era of metadata, genomic engineering with CRISPR-Cas9 meets the developmental requirements of precision medicine, and clinical tests using CRISPR-Cas9 are now possible. This review summarizes developments and established preclinical applications of CRISPR-Cas9 technology, along with its current challenges, and highlights future applications in translational research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.