“…With the rapid development of intelligence science, self-healing, tough, and stretchable materials have become highly desirable and have been attracting increasing attention for their promising application in stretchable sensors, health monitors, surface protection coatings, and so on. − Recently, great progresses have been achieved in developing self-healing hydrogels based on dynamic noncovalent interactions (hydrogen bonds, electrostatic interactions, metal coordination bonds, supramolecular interactions, and hydrophobic interactions), motivating various scientific and engineering innovations in the field of flexible devices. − However, the practical long-term application of synthetic hydrogels is susceptible due to their internal structural defects and fatigue fracture, even though their toughness could be improved by introducing multiple interactions. − On the one hand, lots of water molecules in the hydrogels can disturb the reconnection of dynamic bonds, impeding their further self-healing behavior . On the other hand, it is difficult to simultaneously enhance the mechanical strength and optimize the healing efficiency because these characteristics are contradictory. , Except for the above-mentioned two defects, endowing self-healing materials with photoluminescent (PL) property can promote and extend their applications under more complex working conditions, such as biosensors and optical switch. − …”