Stimuli‐responsive supercapacitors have attracted broad interest in constructing self‐powered smart devices. However, due to the demand for high cyclic stability, supercapacitors usually utilize stable or inert electrode materials, which are difficult to exhibit dynamic or stimuli‐responsive behavior. Herein, this issue is addressed by designing a MoS2@carbon core‐shell structure with ultrathin MoS2 nanosheets incorporated in the carbon matrix. In the three‐electrode system, MoS2@carbon delivers a specific capacitance of 1302 F g−1 at a current density of 1.0 A g−1 and shows a 90% capacitance retention after 10 000 charging‐discharging cycles. The MoS2@carbon‐based asymmetric supercapacitor displays an energy density of 75.1 Wh kg−1 at the power density of 900 W kg−1. Because the photo‐generated electrons can efficiently migrate from MoS2 nanosheets to the carbon matrix, the assembled photo‐responsive supercapacitor can answer the stimulation of ultraviolet‐visible‐near infrared illumination by increasing the capacitance. Particularly, under the stimulation of UV light (365 nm, 0.08 W cm−2), the device exhibits a ≈4.50% (≈13.9 F g−1) increase in capacitance after each charging‐discharging cycle. The study provides a guideline for designing multi‐functional supercapacitors that serve as both the energy supplier and the photo‐detector.
The underlying trend of colloidal synthesis has focused on extending the structure and composition complexity of colloidal particles. Hollow and yolk-shell particles are successful examples that have potential applications in frontier fields. In this paper, a facile and controllable etching method based on the molecular exchange of the dynamic imine bond to generate cavities in polymer particles is developed. Starting from boronate ester polymer particles and inorganic@boronate core-shell particles with the imine bonds incorporated in the polymer networks, the etching method easily affords hollow and yolk-shell particles with tunable shell thicknesses. The molecular exchange dynamics analysis indicates that guest amine molecules cause the reconstruction of imine bonds and the leakage of molecular and oligomer fragments, resulting in the formation of the hollow structure. This molecular exchange-based etching method may be of interest in the construction of polymer architectures with increased composition and structure complexities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.