In this study, we report the clinicopathologic and genomic profiles of 891 patients with RET fusion driven advanced solid tumors. All patient samples were tested using a tissue-based DNA hybrid capture next generation sequencing (NGS) assay and a subset of the samples were liquid biopsies tested using a liquid-based hybrid capture NGS assay. RET fusions were found in 523 patients with NSCLC and in 368 patients with other solid tumors. The two tumor types with the highest number of RET fusion were lung adenocarcinoma and thyroid papillary carcinoma, and they had a prevalence rate 1.14% (455/39,922) and 9.09% (109/1199), respectively. A total of 61 novel fusions were discovered in this pan-tumor cohort. The concordance of RET fusion detection across tumor types among tissue and liquid-based NGS was 100% (8/8) in patients with greater than 1% composite tumor fraction (cTF). Herein, we present the clinicopathologic and genomic landscape of a large cohort of RET fusion positive tumors and we observed that liquid biopsy-based NGS is highly sensitive for RET fusions at cTF ≥1%.
BackgroundImmune checkpoint inhibitors (ICIs) benefit patients with multiple cancer types, however, additional predictive biomarkers of response are needed. CD274 (programmed cell death ligand-1, PD-L1) gene rearrangements are positively associated with PD-L1 expression and may confer benefit to ICI, thus a pan-cancer characterization of these alterations is needed.MethodsWe analyzed 283,050 patient samples across multiple tumor types that underwent comprehensive genomic profiling for activating CD274 rearrangements and other alterations. The DAKO 22C3 Tumor Proportion Scoring (TPS) method was used for PD-L1 immunohistochemistry (IHC) testing in a small subset with available data (n=55,423). A retrospective deidentified real-world clinico-genomic database (CGDB) was examined for ICI treatment outcomes. We also report a detailed case of CD274-rearranged metastatic rectal adenocarcinoma.ResultsWe identified 145 samples with functional rearrangements in CD274. There were significant enrichments for PIK3CA, JAK2, PDCD1LG2, CREBBP, and PBRM1 co-mutations (ORs=2.1, 16.7, 17.8, 3.6, and 3.4, respectively, p<0.01). Genomic human papillomavirus (HPV)-16, Epstein-Barr virus, and mismatch repair genes also co-occurred (OR=6.2, 8.4, and 4.3, respectively, p<0.05). Median tumor mutational burden (TMB) was higher compared with CD274 wild-type samples (7.0 vs 3.5 mutations/Mb, p=1.7e-11), with disease-specific TMB enrichment in non-small cell lung, colorectal, unknown primary, and stomach cancers. PD-L1 IHC skewed toward positivity (N=39/43 samples with ≥1% positivity). Of eight patients from the CGDB, three remained on ICI treatment after 6 months. Separately, one patient with metastatic rectal adenocarcinoma experienced a pathologic complete response on chemoimmunotherapy.ConclusionsCD274 gene rearrangements are associated with increased PD-L1 IHC scores, higher TMB, and potential clinical benefit in ICI-treated patients with cancer.
Gene fusions involving EWSR1 or FUS as the 5 0 partner have been reported in a diverse array of sarcomas. Here, we characterize the histopathology and genomics of six tumors harboring a gene fusion between EWSR1 or FUS and POU2AF3, an understudied, putative colorectal cancer predisposition gene. Striking morphologic features reminiscent of synovial sarcoma were observed including a biphasic appearance with variable fusiform to epithelioid cytomorphology and staghorn-type vasculature. RNA sequencing demonstrated variable breakpoints in EWSR1/FUS along with similar breakpoints in POU2AF3 that encompassed a 3 0 portion of this gene. For cases in which additional information was available, the behavior of these neoplasms was aggressive with local spread and/or distant metastases. Although further studies are needed to confirm the functional significance of our findings, POU2AF3 fusions to EWSR1 or FUS may define a novel type of POU2AF3-rearranged sarcomas with aggressive, malignant behavior.
PURPOSE Programmed cell death protein-1 (PD-1) receptor and ligand interactions are the target of immunotherapies for more than 20 cancer types. Biomarkers that predict response to immunotherapy are microsatellite instability, tumor mutational burden, and programmed death ligand-1 (PD-L1) immunohistochemistry. Structural variations (SVs) in PD-L1 ( CD274) and PD-L2 ( PDCD1LG2) have been observed in cancer, but the comprehensive landscape is unknown. Here, we describe the genomic landscape of PD-L1 and PD-L2 SVs, their potential impact on the tumor microenvironment, and evidence that patients with these alterations can benefit from immunotherapy. METHODS We analyzed sequencing data from cancer cases with PD-L1 and PD-L2 SVs across 22 publications and four data sets, including Foundation Medicine Inc, The Cancer Genome Atlas, International Cancer Genome Consortium, and the Oncology Research Information Exchange Network. We leveraged RNA sequencing to evaluate immune signatures. We curated literature reporting clinical outcomes of patients harboring PD-L1 or PD-L2 SVs. RESULTS Using data sets encompassing 300,000 tumors, we curated 486 cases with SVs in PD-L1 and PD-L2 and observed consistent breakpoint patterns, or hotspots. Leveraging The Cancer Genome Atlas, we observed significant upregulation in PD-L1 expression and signatures for interferon signaling, macrophages, T cells, and immune cell proliferation in samples harboring PD-L1 or PD-L2 SVs. Retrospective review of 12 studies that identified patients with SVs in PD-L1 or PD-L2 revealed > 50% (52/71) response rate to PD-1 immunotherapy with durable responses. CONCLUSION Our findings show that the 3′-UTR is frequently affected, and that SVs are associated with increased expression of ligands and immune signatures. Retrospective evidence from curated studies suggests this genomic alteration could help identify candidates for PD-1/PD-L1 immunotherapy. We expect these findings will better define PD-L1 and PD-L2 SVs in cancer and lend support for prospective clinical trials to target these alterations.
646 Background: Limited data guides the management of older adults with cancer, a patient population that continues to be under-represented in clinical trials. Comprehensive Genomic Profiling (CGP) drives the enrollment on biomarker-based trials and may inform treatment selection. This analysis aims to evaluate the use of CGP in older patients with gastrointestinal (GI) malignancies and to compare results of genomic profiling across age groups. Methods: Clinical CGP results derived from Next Generation Sequencing (NGS) of tumor tissue (n=92802) were reviewed for patients with GI malignancies. Genomic alterations (GAs) and complex signatures were identified, based on hybridization-captured, adapter ligation-based sequencing. Association between age group (< 65: n=51652; 65-74: n=28972; 75+: n=12178) and biomarkers of interests was evaluated using Chi-square test, adjusting for multiple testing using Bonferroni correction. Delay-adjusted incidence rates in populations included in the study were acquired from SEER Databases. Results: The majority of patients in the CGP cohort were <65 yrs (55.7%). Patients aged 75 and above were underrepresented as compared to the SEER database incidence rates (15.2% vs. 31.6%, p <0.0005). Overall, the incidence of known or likely pathogenic GAs was similar across all age groups (>99%). An analysis of specific GAs among all the GI cancers analyzed showed an age-associated increase of high tumor mutational burden (≥10 mut/Mb) (TMB-H) (5.6% vs 6.6% vs 10.7% for respective age groups, p<0.0005). The overall incidence of mismatch repair deficiency or microsatellite instability (dMMR/MSI) (3.6% vs 4.0% vs 7.5%, p<0.0005) and DNA damage repair mutations (DDR mut) (13.2% vs 13.9% vs 16.4%, p<0.0005) also increased with age. The magnitude of the CGP findings varied by GI cancer type, as summarized for select significant findings (p <0.0005) in Table. Detailed results for each GI subtype and relevant biomarkers will be presented. Conclusions: This large scale analysis of CGP done for patients with GI cancers showed that genomic profiling is under utilized in older adults who constitute the majority of patients with GI malignancies. These findings may improve access to clinical trials and guide the development of older adult-specific studies.[Table: see text]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.