The results indicate that the type I IFN pathway is activated in patient subsets of five rheumatic diseases and suggest that these subsets may benefit from anti-IFN therapy.
H1 linker histones facilitate higher-order chromatin folding and are essential for mammalian development. To achieve high-resolution mapping of H1 variants H1d and H1c in embryonic stem cells (ESCs), we have established a knock-in system and shown that the N-terminally tagged H1 proteins are functionally interchangeable to their endogenous counterparts in vivo. H1d and H1c are depleted from GC- and gene-rich regions and active promoters, inversely correlated with H3K4me3, but positively correlated with H3K9me3 and associated with characteristic sequence features. Surprisingly, both H1d and H1c are significantly enriched at major satellites, which display increased nucleosome spacing compared with bulk chromatin. While also depleted at active promoters and enriched at major satellites, overexpressed H10 displays differential binding patterns in specific repetitive sequences compared with H1d and H1c. Depletion of H1c, H1d, and H1e causes pericentric chromocenter clustering and de-repression of major satellites. These results integrate the localization of an understudied type of chromatin proteins, namely the H1 variants, into the epigenome map of mouse ESCs, and we identify significant changes at pericentric heterochromatin upon depletion of this epigenetic mark.
Gamboge has been developed as an injectable drug for cancer treatment in China. In this study, the inhibition ratio and their IC(50) values of two derivatives from Gamboge in hepatocellular carcinoma (HCC) were determined. Proteomic approach was employed to reveal the target proteins of these two derivatives, gambogic acid (GA), and gambogenic acid (GEA). HCC cells were cultured under varied conditions with the addition of either GA or GEA. Twenty differentially expressed proteins were identified and the four most distinctly expressed proteins were further validated by Western blotting. GA and GEA revealed inhibitory effects on HCC cell proliferation. The expression of cyclin-dependent kinase 4 inhibitor A and guanine nucleotide-binding protein beta subunit 1 were upregulated by both xanthones, whilst the expression of 14-3-3 protein sigma and stathmin 1 (STMN1) were downregulated. Furthermore, overexpression of STMN1 in HCC cells decreased their sensitivity, whilst small interfering RNAs targeting STMN1 enhanced their sensitivity to GA and GEA. In conclusion, our study suggested for the first time that STMN1 might be a major target for GA and GEA in combating HCC. Further investigation may lead to a new generation of anticancer drugs exerting synergistic effect with conventional therapy, thus to promote treatment efficacy.
DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNA missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection.
Pre-eclampsia (PE) is one of the leading causes of maternal and neonatal morbidity and mortality. In recent years, many studies have shown that microRNAs (miRNA) play important roles in the development of PE. However, the molecular pathogenesis of PE remains unknown.In the present study, we performed a case–control study to verify the differential expression of 4 candidate miRNAs (miR-210, miR-155, miR-125b-5p, and miR-125a-5p) in 20 PE pregnancies and 20 healthy pregnancies. The real-time quantitative reverse transcriptase-polymerase chain reaction has been utilized to estimate the Ct values in both groups.Our results have shown that miR-210 and miR-155 were upregulated in serum of PE pregnancies, which suggest a potential association between these 2 miRNAs and the pathogenesis of PE. Further studies showed that the area under the receiver operating characteristic curve (AUC) of miR-210 and miR-155 were 0.750 and 0.703, respectively. The AUC of the expression ratio of miR-210 (serum/urine) and miR-155 (serum/urine) were 0.761 and 0.718, respectively. Moreover, 24-hour urine proteins have positive correlation with urine miR-210 and miR-155.Our findings indicated that serum miR-210 and miR-155 could be 2 sensitivity and specificity biomarkers for the diagnosis of PE while urine miR-210 and miR-155 both could be used to evaluate the severity of kidney injury. Using these miRNAs may provide a novel diagnosis method for identifying pregnant women who are at risk for developing PE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.