These results suggest that activated autophagy may attenuate intestinal mucosal barrier dysfunction by preventing and reducing the oxidative stress in SAP.
Wear debris induced aseptic loosening is the leading cause of total knee arthroplasty (TKA) failure. The complex mechanism of aseptic loosening has been a major issue for introducing effective prevention and treatment methods, so a simplified yet efficient rabbit model was established to address this concern with the use of micrometer-sized titanium particles. 20 New Zealand white rabbits were selected and divided into two groups (control = 10, study = 10). A TKA surgery was then performed for each of them, with implantation of a titanium rod prosthesis which was coated evenly with micrometer-sized titanium in the study group and nothing in the control group, into right femoral medullary cavity. After 12 weeks, all the animals were euthanized and X-ray analyses, H&E staining, Goldner Masson trichrome staining, Von Kossa staining, PCR, and Western blotting of some specific mRNAs and proteins in the interface membrane tissues around the prosthesis were carried out. The implantation of a titanium rod prosthesis coated with 20 μm titanium particles into the femoral medullary cavity of rabbits caused continuous titanium particle stimulation around the prosthesis, effectively inducing osteolysis and aseptic loosening. Titanium particle-induced macrophages produce multiple inflammatory factors able to activate osteoclast differentiation through the OPG/RANKL/RANK signaling pathway, resulting in osteolysis while suppressing the function of osteoblasts and reducing bone ingrowth around the prosthesis. This model simulated the implantation and loosening process of an artificial prosthesis, which is an ideal etiological model to study the aseptic prosthetic loosening.
Adhesion of the knee is a major concern after knee surgery, the treatment of which is difficult. Botulinum toxin A (BTX-A) injection is demonstrated as efficient in treating knee adhesion after surgery. However, the treatment outcomes and the mechanism of action are not yet determined. The aim of the present study was to examine the effects and molecular mechanism of a BTX-A treatment in preventing adhesion of the knee. Twenty-four Wistar rats were randomly divided into a BTX-A treatment group and a control group. BTX-A or saline was injected into the cavity of the knee in the BTX-A treatment or control group respectively. Gross and histopathological examinations of interleukin 1 (IL-1) and fibroblast growth factor (FGF) levels, as well as fibroblast cell numbers, were assessed in the knee intra-articular adhesions in each group 6 weeks after recovery from the surgery. Macroscopic observations showed a significant reduction in adhesion severity in the BTX-A treatment group compared with the control group. In addition, the levels of IL-1 and FGF were lower and the number of fibroblasts was smaller in the BTX-A treatment group compared with those in the control group. BTX-A prevented intra-articular adhesion of knee in the rats, which might be associated with reduced expressions of IL-1 and FGF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.