BackgroundTo explore the theoretical basis for protecting the brain from ischemic stroke with tetramethylpyrazine, we studied whether and how tetramethylpyrazine could protect neurons against the oxygen-glucose deprivation (OGD)-induced death and whether transient receptor potential cation channel, subfamily C, member 6 (TRPC6) was involved.Material/MethodsPrimary rat cortical neurons were cultured and an OGD model was established in the presence or absence of tetramethylpyrazine. Neuronal death was assessed by measuring the uptake of membrane-impermeable PI. Western blot analysis was used to determine the protein expressions of TRPC6 and caspase-3. The involvement of TRPC6 was tested via RNAi against TRPC6.ResultsOGD-induced neuronal death was decreased by tetramethylpyrazine in a concentration-dependent manner. The expression of TRPC6 protein was decreased by OGD. Furthermore, downregulating TRPC6 by RNA interfering mimicked the effect of OGD in neuronal death. Tetramethylpyrazine attenuated OGD-induced TRPC6 downregulation in a tetramethylpyrazine concentration-dependent manner. However, these effects of tetramethylpyrazine on attenuating OGD-induced neuronal death were abolished by TRPC6 RNAi.ConclusionsTetramethylpyrazine can protect neurons from oxygen-glucose deprivation-induced death, possibly via TRPC6.
Silicon carbide (SiC), a compound of silicon and carbon, with chemical formula SiC, the beta modification (β-SiC), with a zinc blende crystal structure (similar to diamond), is formed at temperature below 1700°C. β-SiC will be the most suitable ceramic material for the future hard tissue replacement, such as bone and tooth. The in vitro cytotoxicity of β-SiC nanowires was investigated for the first time. Our results indicated that 100 nm long SiC nanowires could significantly induce the apoptosis in MC3T3-E1 cells, compared with 100 μm long SiC nanowires. And 100 nm long SiC nanowires increased oxidative stress in MC3T3-E1 cells, as determined by the concentrations of MDA (as a marker of lipid peroxidation) and 8-OHdG (indicator of oxidative DNA damage). Moreover, transmission electron microscopy (TEM) was performed to evaluate the morphological changes of MC3T3-E1 cells. After treatment with 100 nm long SiC nanowires, the mitochondria were swelled and disintegrated, and the production of ATP and the total oxygen uptake were also decreased significantly. Therefore, β-SiC nanowires may have limitations as medical material.
Neuronal apoptosis is a potentially fatal pathological process that occurs in early brain injury (EBI) after subarachnoid hemorrhage (SAH). There is an urgent need to identify effective therapeutics to alleviate neuronal apoptosis. Tetramethylpyrazine (TMP), as an important component of the Chinese traditional medicinal herb Ligusticum wallichii, has been widely used in China to treat cerebral ischemic injury and confer neuroprotection. In the present work, we investigate whether TMP can reduce EBI following SAH in rats, specifically via inactivating the PERK/Akt signaling cascade. One hundred twenty-five male Sprague-Dawley rats were used in the present study. TMP was administered by intravenous (i.v.) injection, and the Akt inhibitor MK2206 was injected intracerebroventricularly (i.c.v.). SAH grade, neurological scores, and brain water content were measured 24 h after SAH. Neuronal apoptosis was visualized by Fluoro-Jade C (FJC) staining. Western blotting was used to measure the levels of PERK, p-PERK, eIF2α, p-eIF2α, Akt, p-Akt, Bcl-2, Bax, and cleaved caspase-3. Our results showed that TMP effectively reduced neuronal apoptosis and improved neurobehavioral deficits 24 h after SAH. Administration of TMP reduced the abundance of p-PERK and p-eIF2α. In addition, TMP increased the p-Akt level and the Bcl-2/Bax ratio and decreased the level of cleaved caspase-3. The selective Akt inhibitor MK2206 abolished the anti-apoptotic effect of TMP at 24 h after SAH. Collectively, these results indicate that Akt-related anti-apoptosis through the PERK pathway is a major, potent mechanism of EBI. Further investigation of this pathway may provide a basis for the development of TMP as a clinical treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.