Quantum computing is among the most promising emerging techniques to solve problems that are computationally intractable on classical hardware. A large body of existing works focus on using variational quantum algorithms on the gate level for machine learning tasks, such as the variational quantum circuit (VQC). However, VQC has limited flexibility and expressibility due to limited number of parameters, e.g. only one parameter can be trained in one rotation gate. On the other hand, we observe that quantum pulses are lower than quantum gates in the stack of quantum computing and offers more control parameters. Inspired by the promising performance of VQC, in this paper we propose variational quantum pulses (VQP), a novel paradigm to directly train quantum pulses for learning tasks. The proposed method manipulates variational quantum pulses by pulling and pushing the amplitudes of pulses in an optimization framework. Similar to variational quantum algorithms, our framework to train pulses maintains the robustness to noise on Noisy Intermediate-Scale Quantum (NISQ) computers. In an example task of binary classification, VQP learning achieves 30% and 40% higher accuracy compared with VQC learning on the qiskit noise simulatosr (FakeMachines) and ibmq-jarkata, respectively, demonstrating its effectiveness and feasibility. Stability for VQP to obtain reliable results has also been verified in the presence of noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.