Materials with hierarchical porosity and structures have been heavily involved in newly developed energy storage and conversion systems. Because of meticulous design and ingenious hierarchical structuration of porosities through the mimicking of natural systems, hierarchically structured porous materials can provide large surface areas for reaction, interfacial transport, or dispersion of active sites at different length scales of pores and shorten diffusion paths or reduce diffusion effect. By the incorporation of macroporosity in materials, light harvesting can be enhanced, showing the importance of macrochannels in light related systems such as photocatalysis and photovoltaics. A state‐of‐the‐art review of the applications of hierarchically structured porous materials in energy conversion and storage is presented. Their involvement in energy conversion such as in photosynthesis, photocatalytic H2 production, photocatalysis, or in dye sensitized solar cells (DSSCs) and fuel cells (FCs) is discussed. Energy storage technologies such as Li‐ions batteries, supercapacitors, hydrogen storage, and solar thermal storage developed based on hierarchically porous materials are then discussed. The links between the hierarchically porous structures and their performances in energy conversion and storage presented can promote the design of the novel structures with advanced properties.
To address the growing energy demands of sustainable development, it is crucial to develop new materials that can improve the efficiency of energy storage systems. Hierarchically structured porous materials have shown their great potential for energy storage applications owing to their large accessible space, high surface area, low density, excellent accommodation capability with volume and thermal variation, variable chemical compositions and well controlled and interconnected hierarchical porosity at different length scales. Porous hierarchy benefits electron and ion transport, and mass diffusion and exchange. The electrochemical behavior of hierarchically structured porous materials varies with different pore parameters. Understanding their relationship can lead to the defined and accurate design of highly efficient hierarchically structured porous materials to enhance further their energy storage performance. In this review, we take the characteristic parameters of the hierarchical pores as the survey object to summarize the recent progress on hierarchically structured porous materials for energy storage. This is the first of this kind exclusively to survey the performance of hierarchically structured porous materials from different porous characteristics. For those who are not familiar with hierarchically structured porous materials, a series of very significant synthesis strategies of hierarchically structured porous materials are firstly and briefly reviewed. This will be beneficial for those who want to quickly obtain useful reference information about the synthesis strategies of new hierarchically structured porous materials to improve the their performance in energy storage. The effect of different organizational, structural and geometric parameters of porous hierarchy on their electrochemical behavior is then deeply discussed. We outline the existing problems and development challenges of hierarchically structured porous materials that need to be addressed in renewable energy applications. We hope that this review can stimulate strong intuition into the design and application of new hierarchically structured porous materials in energy storage and other fields.
Bioinspired
hydrogels have promising prospects in applications
such as wearable devices, human health monitoring equipment, and soft
robots due to their multifunctional sensing properties resembling
natural skin. However, the preparation of intelligent hydrogels that
provide feedback on multiple electronic signals simultaneously, such
as human skin receptors, when stimulated by external contact pressure
remains a substantial challenge. In this study, we designed a bioinspired
hydrogel with multiple conductive capabilities by incorporating carbon
nanotubes into a chelate of calcium ions with polyacrylic acid and
sodium alginate. The bioinspired hydrogel consolidates self-healing
ability, stretchability, 3D printability, and multiple conductivities.
It can be fabricated as an integrated strain sensor with simultaneous
piezoresistive and piezocapacitive performances, exhibiting sensitive
(gauge factor of 6.29 in resistance mode and 1.25 kPa–1 in capacitance mode) responses to subtle pressure changes in the
human body, such as finger flexion, knee flexion, and respiration.
Furthermore, the bioinspired strain sensor sensitively and discriminatively
recognizes the signatures written on it. Hence, we expect our ideas
to provide inspiration for studies exploring the use of advanced hydrogels
in multifunctional skin-like smart wearable devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.