Water is an essential comonomer in a supramolecular polymer that is used as a recyclable, water-activated glue.
CONSPECTUS: Supramolecular gels are ideal candidates for soft, stimuli-responsive materials, because they combine the elastic behavior of solids with the microviscous properties of fluids. The dynamic networks of fibers in supramolecular gels are reminiscent of the cytoskeleton of a cell and provide scaffolds to implement function. When gels are made responsive to stimuli, these mechanical properties can be controlled. Gel-sol transitions also open opportunities to immobilize molecules inside the gel's cavities and to release them on demand. To establish selective responsiveness, suitable recognition sites are required influencing the properties of the fiber network depending on the presence of the stimulus. Supramolecular gels are expected to be stimuli-responsive per se, for example, to temperature, mechanical stress, or an environment that is competitive with the noncovalent interactions connecting the low-molecular weight gelators. Nevertheless, the opportunities for controlling the mechanical properties are rather limited, if one merely relies on interfering with these interactions. It would be much more promising to equip the gel with additional receptor sites that offer selectivity for a broader variety of chemical stimuli. Macrocycles often exhibit a distinct host-guest chemistry and thus are excellent candidates for this purpose. A broad variety of macrocycles differing with respect to structure, topology, solubility, or biocompatibility have been incorporated in gels and endow gels with responsiveness and function. Macrocycles can have different roles: They offer rather rigid scaffolds for the construction of structurally well-defined gelator molecules. Furthermore, their host-guest interactions can be integral to gel formation, if these interactions are required to build the gel fibers. Finally, macrocycles can also be functional groups with which gelators are equipped that would also form gels in the absence of the macrocycle. Here, the macrocycle can be used as a binding site to allow additional stimuli control. To combine different stimuli for triggering gel-sol transitions certainly expands the options for establishing stimuli responsiveness. If, for example, an agent trapped inside the gel is only liberated when two different stimuli are present simultaneously, its release can be controlled with much higher precision and selectivity compared with a gel that responds to one stimulus only. In this Account, the recent progress in the construction of functional macrocycle-containing supramolecular gels is summarized. First, recent strategies to engineer responsiveness into macrocycle-containing gels are discussed. Next, different functions are presented including applications as responsive reaction media, for controlled drug-delivery or tissue engineering, and as self-healing materials. Finally, we highlight the recent progress in designing macrocycle-containing supramolecular gel materials exhibiting complex behavior. This field is part of systems chemistry and still in its infancy but appears to be ...
Supramolecular polymerization for non-wetting surface coatings is described. The self-assembly of low-molecular-weight gelators (LMWGs) with perfluorinated side chains can be utilized to rapidly construct superhydrophobic, as well as liquid-infused slippery surfaces within minutes. The lubricated slippery surface exhibits impressive repellency to biological li-quids, such as human serum and blood, and very fast self-healing.
We have developed a new type of surface-enhanced Raman scattering (SERS) substrate that consists of per-6-deoxy-(6-thio)-beta-cyclodextrin (CD-SH) modified by silver nanoparticles (AgNPs) for sensing of polycyclic aromatic hydrocarbons (PAHs), a kind of environmental pollutant, with very low affinity to metallic surfaces. The designed system can induce some PAH molecules (anthracene and pyrene) to insert into the hydrophobic cavity of beta-CD, which enables one to detect SERS of PAHs because the analytes are very close to the AgNPs surface, which is the zone of electromagnetic enhancement. The measured spectra can easily distinguish the two kinds of PAH compounds in a mixture by their own characteristic peaks. In addition, we carried out selective detection of PAHs by SERS of the inclusion complexes with different concentrations in the presence of CD-SH functionalized AgNPs. Moreover, this sensing platform has been applied to quantitative detection of PAH in a mixture consisting of anthracene and pyrene. The CD molecule has the feature of high selectivity due to its size of cavity, significantly enhancing the sensitivity of the system after CD-SH adsorbs on AgNPs via the terminal thiol. This proposed method for the detection of PAHs holds great potential in environmental analytical chemistry.
A supramolecular carbohydrate-functionalized two-dimensional (2D) surface was designed and synthesized by decorating thermally reduced graphene sheets with multivalent sugar ligands. The formation of host-guest inclusions on the carbon surface provides a versatile strategy, not only to increase the intrinsic water solubility of graphene-based materials, but more importantly to let the desired biofunctional binding groups bind to the surface. Combining the vital recognition role of carbohydrates and the unique 2D large flexible surface area of the graphene sheets, the addition of multivalent sugar ligands makes the resulting carbon material an excellent platform for selectively wrapping and agglutinating Escherichia coli (E. coli). By taking advantage of the responsive property of supramolecular interactions, the captured bacteria can then be partially released by adding a competitive guest. Compared to previously reported scaffolds, the unique thermal IR-absorption properties of graphene derivatives provide a facile method to kill the captured bacteria by IR-laser irradiation of the captured graphene-sugar-E. coli complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.