Bone remodeling is tightly regulated by a cross-talk between bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoblasts and osteoclasts communicate with each other to regulate cellular behavior, survival and differentiation through direct cell-to-cell contact or through secretory proteins. A direct interaction between osteoblasts and osteoclasts allows bidirectional transduction of activation signals through EFNB2-EPHB4, FASL-FAS or SEMA3A-NRP1, regulating differentiation and survival of osteoblasts or osteoclasts. Alternatively, osteoblasts produce a range of different secretory molecules, including M-CSF, RANKL/OPG, WNT5A, and WNT16, that promote or suppress osteoclast differentiation and development. Osteoclasts also influence osteoblast formation and differentiation through secretion of soluble factors, including S1P, SEMA4D, CTHRC1 and C3. Here we review the current knowledge regarding membrane bound- and soluble factors governing cross-talk between osteoblasts and osteoclasts.
Patients with rheumatoid arthritis (RA) have historically developed progressive damage of articular bone and cartilage, which correlates with disability over time. In addition, these patients are prone to periarticular and systemic bone loss, carrying additional morbidity. In contrast to what is seen in many other rheumatic diseases, the impact of inflammation on bone in RA is uniquely destructive. Loss of articular bone (erosions) and periarticular bone (demineralization) is a result of excessive bone resorption and markedly limited bone formation. There has been tremendous progress in preventing net bone loss in RA with the advent of disease-modifying agents, including biologic agents and small molecules, that both limit inflammation and may have a direct impact on the prevention of cytokine- and antibody-driven osteoclastogenesis. However, repair of existing bone erosions, although feasible, is observed infrequently. Lack of repair is a consequence of suppression of osteoblast function and bone formation by some of the same mechanisms that promote osteoclastogenesis and bone resorption. As new agents are introduced to control inflammation in RA, and novel mechanisms to target synovitis are identified, it may be possible in the future to fully repair damaged bone.
Background Neutrophils are present in the early phases of spondyloarthritis-related uveitis, skin and intestinal disease, but their role in enthesitis, a cardinal musculoskeletal lesion in spondyloarthritis, remains unknown. We considered the role of neutrophils in the experimental SKG mouse model of SpA and in human axial entheses. Methods Early inflammatory infiltrates in the axial and peripheral entheseal sites in SKG mice were evaluated using immunohistochemistry and laser capture microdissection of entheseal tissue. Whole transcriptome analysis was carried out using Affymetrix gene array MTA 1.0, and data was analyzed via IPA. We further isolated neutrophils from human peri-entheseal bone and fibroblasts from entheseal soft tissue obtained from the axial skeleton of healthy patients and determined the response of these cells to fungal adjuvant. Results Following fungal adjuvant administration, early axial and peripheral inflammation in SKG mice was characterized by prominent neutrophilic entheseal inflammation. Expression of transcripts arising from neutrophils include abundant mRNA for the alarmins S100A8 and S100A9. In normal human axial entheses, neutrophils were present in the peri-entheseal bone. Upon fungal stimulation in vitro, human neutrophils produced IL-23 protein, while isolated human entheseal fibroblasts produced chemokines, including IL-8, important in the recruitment of neutrophils. Conclusion Neutrophils with inducible IL-23 production are present in uninflamed human entheseal sites, and neutrophils are prominent in early murine spondyloarthritis-related enthesitis. We propose a role for neutrophils in the early development of enthesitis.
Research in bone biology has shed light on the pathogenesis of the joint destruction that occurs in RA and in peripheral SpA. However, understanding the mechanisms behind the bone formation seen in peripheral and axial SpA has been challenging. Mouse models have been used to gain an understanding of key signaling pathways, cytokines and cells regulating inflammation in these diseases. Biologic therapies directed against these targets have been developed to control both inflammation and effects on bone. Although biologic therapies improve joint inflammation in both RA and SpA, leading to a decrease in pain and improving quality of life for patients, the long-term effects of such therapies must also be evaluated by assessing their impact on structural progression. Inhibition of radiographic progression in both RA and peripheral SpA has been easier to demonstrate than in axial SpA. Here, we discuss the similarities and differences among biologic therapies as they pertain to radiographic progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.