Endothelial cell injury and apoptosis play a primary role in the pathogenesis of atherosclerosis. Moreover, accumulating evidence indicates that oxidative injury is an important risk factor for endothelial cell damage. In addition, low folate levels are considered a contributing factor to promotion of vascular disease because of the deregulation of DNA methylation. We aimed to investigate the effects of folic acid on injuries induced by oxidative stress that occur via an epigenetic gene silencing mechanism in ApoE knockout mice fed a high-fat diet and in human umbilical vein endothelial cells treated with oxidized low-density lipoprotein (ox-LDL). We assessed how folic acid influenced the levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG, an oxidative DNA damage marker) and cellular apoptosis in in vivo and in vitro models. Furthermore, we analyzed DNA methyltransferase (DNMT) activity, vascular peroxidase 1 (VPO1) expression, and promoter methylation in human umbilical vein endothelial cells. Our data showed that folic acid reduced 8-OHdG levels and decreased apoptosis in the aortic tissue of ApoE−/− mice. Likewise, our in vitro experiments showed that folic acid protects against endothelial dysfunction induced by ox-LDL by reducing reactive oxygen species (ROS)-derived oxidative injuries, 8-OHdG content, and the apoptosis ratio. Importantly, this effect was indirectly caused by increased DNMT activity and altered DNA methylation at VPO1 promoters, as well as changes in the abundance of VPO1 expression. Collectively, we conclude that folic acid supplementation may prevent oxidative stress-induced apoptosis and suppresses ROS levels through downregulating VPO1 as a consequence of changes in DNA methylation, which may contribute to beneficial effects on endothelial function.
Periconceptional maternal folate levels may alter DNA methylation patterns and health outcomes in offspring. We hypothesized that maternal folic acid supplementation alters fetal neural development through DNA methylation in the fetal brain. Twenty-eight rats were randomly assigned to four groups: three groups of the female rats were fed folate-normal, folate-deficient or folate-supplemented diets from seven days before mating to delivery. In another group, folic acid supplementation diet short-period group was fed a folate-normal diet, except for 10 days (begin mating) when this group was fed a folate-supplemented diet. After delivery, the diets were changed to folate-normal diet for all four groups. The cliff avoidance and forelimb grip tests were used to assess sensory motor function of rat offspring. The results indicate that maternal folic acid supplementation improved the early development of sensory-motor function in offspring. Maternal folic acid supplementation increased the methylation potential, global DNA methylation (5-mC) and DNA methyltransferase expression and activity in the brains of the offspring. In conclusion, maternal folic acid supplementation increases DNA methylation pattern in offspring brain and improves the early development of sensory-motor function.
Astrocytes are the most widely distributed cells in the brain, and astrocyte apoptosis may play an important role in the pathogenesis of neurodegenerative diseases. Folate is required for the normal development of the nervous system, but its effect on astrocyte apoptosis is unclear. In this study, we hypothesized that folic acid (the therapeutic form of folate) decreases astrocyte apoptosis by preventing oxidative stress-induced telomere attrition. Primary cultures of astrocytes were incubated for 12 days with various concentrations of folic acid (0–40 μmol/L), then cell proliferation, apoptosis, intracellular folate concentration, intracellular homocysteine (Hcy) concentration, intracellular reactive oxygen species (ROS) levels, telomeric DNA oxidative damage, and telomere length were determined. The results showed that folic acid deficiency decreased intracellular folate, cell proliferation, and telomere length, whereas it increased Hcy concentration, ROS levels, telomeric DNA oxidative damage, and apoptosis. In contrast, folic acid dose-dependently increased intracellular folate, cell proliferation, and telomere length but it decreased Hcy concentration, ROS levels, telomeric DNA oxidative damage, and apoptosis. In conclusion, folic acid inhibited apoptosis in astrocytes. The underlying mechanism for this protective effect may be that folic acid decreased oxidative stress and thereby prevented telomeric DNA oxidative damage and telomere attrition.
Maternal folic acid supplementation during pregnancy is associated with improved cognitive performances in offspring. However, the effect of supplementation on offspring's neurogenesis and synaptogenesis is unknown, and whether supplementation should be continued throughout pregnancy is controversial. In present study, 3 groups of female rats were fed a folate-normal diet, folate-deficient diet, or folate-supplemented diet from 1 week before mating until the end of pregnancy. A fourth group fed folate-normal diet from 1 week before mating until mating, then fed folate-supplemented diet for 10 consecutive days, then fed folate-normal diet until the end of pregnancy. Offspring were sacrificed on postnatal day 0 for measurement of neurogenesis and synaptogenesis by immunofluorescence and western blot. Additionally neural stem cells (NSCs) were cultured from offspring's hippocampus for immunocytochemical measurement of their rates of proliferation and neuronal differentiation. The results demonstrated that maternal folic acid supplementation stimulated hippocampal neurogenesis by increasing proliferation and neuronal differentiation of NSCs, and also enhanced synaptogenesis in cerebral cortex of neonatal offspring. Hippocampal neurogenesis was stimulated more when supplementation was continued throughout pregnancy instead of being limited to the periconceptional period. In conclusion, maternal folic acid supplementation, especially if continued throughout pregnancy, improves neurogenesis and synaptogenesis in neonatal offspring.
Background Periconceptional folic acid (FA) supplementation not only reduces the incidence of neural tube defects, but also improves cognitive performances in offspring. However, the genes or pathways that are epigenetically regulated by FA in neurodevelopment were rarely reported. Methods To elucidate the underlying mechanism, the effect of FA on the methylation profiles in brain tissue of male rat offspring was assessed by methylated DNA immunoprecipitation chip. Differentially methylated genes (DMGs) and gene network analysis were identified using DAVID and KEGG pathway analysis. Results Compared with the folate-normal diet group, 1939 DMGs were identified in the folate-deficient diet group, and 1498 DMGs were identified in the folate-supplemented diet group, among which 298 DMGs were overlapped. The pathways associated with neurodevelopment and learning/memory abilities were differentially methylated in response to maternal FA intake during pregnancy, and there were some identical and distinctive potential mechanisms under FA deficiency or FA-supplemented conditions. Conclusions In conclusion, genes and pathways associated with neurodevelopment and learning/memory abilities were differentially methylated in male rat offspring in response to maternal FA deficiency or supplementation during pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.