In this article, a novel multiscale modeling method is proposed for transient computational fluid dynamics (CFD) simulations of the human airways. The developed method is the first attempt to incorporate spatial coupling and temporal coupling into transient human airway simulations, aiming to improve the flexibility and the efficiency of these simulations. In this method, domain decomposition was used to separate the complex airway model into different scaled domains. Each scaled domain could adopt a suitable mesh and timestep, as necessary: the coarse mesh and large timestep were employed in the macro regions to reduce the computational cost, while the fine mesh and small timestep were used in micro regions to maintain the simulation accuracy. The radial point interpolation method was used to couple data between the coarse mesh and the fine mesh. The continuous micro solution–intermittent temporal coupling method was applied to bridge different timesteps. The developed method was benchmarked using a well‐studied four‐generation symmetric airway model under realistic normal breath conditions. The accuracy and efficiency of the method were verified separately in the inhalation phase and the exhalation phase. Similar airflow behavior to previous studies was observed from the multiscale airway model. The developed multiscale method has the potential to improve the flexibility and efficiency of transient human airway simulations without sacrificing accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.