Annexin A2 is a member of the Annexin family that acts as a Ca2+-dependent phospholipid and membrane binding protein, which is associated with the survival and spread of multiple neoplasms. However, the function of Annexin A2 in ovarian cancer progression remains unclear. In this study, we aimed to investigate the role and underlying molecular mechanism of Annexin A2 in cell proliferation and invasion in ovarian cancer. We found that the mRNA expression of Annexin A2 was upregulated in ovarian cancer tissues and cell lines. In the loss-of-function of Annexin A2, β-catenin was indicated to be significantly suppressed and EMT constrained. Moreover, cell proliferation and invasion were both markedly inhibited by the downregulation of Annexin A2. Additionally, the overexpression of β-catenin obviously reversed the effect of Annexin A2 on EMT, and cell proliferation and invasion, indicating that Annexin A2 suppression regulated EMT through controlling β-catenin. Taken together, this study showed that Annexin A2 inhibition suppresses proliferation and invasion in ovarian cancer via β-catenin/EMT, proposing the potential role of Annexin A2 in the prevention and treatment of ovarian cancer.
Erythropoietin‐producing hepatocellular receptor A2 (EphA2) receptor tyrosine kinase plays an important role in tissue organization and homeostasis in normal organs. EphA2 is overexpressed in a variety of types of solid tumours with oncogenic functions. However, the role of EphA2 in cervical cancer (CC) is still needed to be further explored. Here, we examined the role of EphA2 by establishing a stable EphA2 knock‐down CC cell lines or a stable EphA2‐overexpressed CC cells lines. Overexpression of EphA2 increased cell proliferation and migration of CC while EphA2 knock‐down decreased the CC tumorigenicity. In addition, EphA2 knock‐down suppressed CC tumour development in the xenograft mouse model. Inhibition of EphA2 by AWL‐II‐41‐27, EphA2‐specific tyrosine kinase inhibitor, or knock‐down of EphA2 decreased mRNA and protein expression of cyclin‐dependent kinase (CDK) 6 in CC cells, which increased cellular susceptibility to epirubicin (EPI), an anti‐cancer chemotherapy drug. A clinicopathological study of EphA2 was conducted on a cohort of 158 human CC patients. EphA2 protein expression was positively correlated with CDK6 protein expression, invasion depth, lymph node metastasis and clinicopathological stage (P < .05). This study demonstrates the oncogenic activity of EphA2 in vitro and in vivo, which provides insights into the relevant mechanisms that might lead to novel treatments for CC.
Recently, several studies have reported associations between fat mass and obesity-associated (FTO) gene mutations and cancer susceptibility. But little is known about their association with risk and survival of breast cancer in Chinese population. The aim of this study is to examine whether cancer-related FTO polymorphisms are associated with risk and survival of breast cancer and BMI levels in controls in a Chinese population. We genotyped six FTO polymorphisms in a case-control study, including 537 breast cancer cases and 537 controls. FTO rs1477196 AA genotype had significant decreased breast cancer risk [odds ratio (OR) = 0.54, 95% confidence interval (CI): 0.34–0.86] compared to GG genotype, and this association was only found in women with BMI < 24 kg/m2 (OR = 0.41, 95% CI: 0.22–0.76); and rs16953002 AA genotype conferred significant increased breast cancer risk (OR = 1.80, 95% CI: 1.23–2.63) compared to GG genotype. Haplotype analysis showed that FTO TAC haplotype (rs9939609-rs1477196-rs1121980) had significant reduced breast cancer risk (OR = 0.76, 95% CI: 0.62–0.93) compared with TGC haplotype. But we failed to find any association between FTO polymorphisms and breast cancer survival. These findings suggest that variants in FTO gene may influence breast cancer susceptibility.
Abstract. MicroRNAs serve a role in the development of ovarian cancer (OC). The present study investigated whether let-7c is able to regulate the proliferation of OC cells by targeting cell division cycle 25A (CDC25a). The reverse transcription-quantitative polymerase chain reaction was performed to detect the expression of let-7c in OC specimens. Let-7c agomir was transfected into OC cells, and the proliferation and apoptosis of OC cells were detected. A dual-luciferase assay and western blotting were performed to analyze whether CDC25a was the target gene of let-7c as well as its interaction site. The results revealed that, in OC tissue, let-7c was downregulated when compared with normal ovarian tissue. A Cell Counting Kit-8 (CCK8) assay, colony formation assay and flow cytometry demonstrated that increased expression of let-7c was able to inhibit the proliferation and increase the apoptosis of OC cells. Western blotting revealed that upregulated let-7c is able to decrease the expression of CDC25a, and a dual-luciferase assay and a recovery assay demonstrated that let-7c was able to regulate the expression of the 3' untranslated region of CDC25a. Therefore, the roles of let-7c in inhibiting the proliferation and promoting the apoptosis of OC cells may be realized through the regulation of the expression of CDC25a. The results of the present study revealed that let-7c may be a novel target in the diagnosis and treatment of OC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.