Zn O ∕ ( La , Sr ) ( Al , Ta ) O 3 ( LSAT ) heterointerface is engineered to control the crystallographic orientation of ZnO films grown by plasmas-assisted molecular beam epitaxy. Lattice-matched in-plane alignment of [112¯0]ZnO‖[112¯]LSAT has been realized using Mg modification of the substrate surface, which is confirmed with in situ reflection high-energy electron diffraction observation, and ex situ characterization of x-ray diffraction and transmission electron microscopy. The low-temperature deposition and high-temperature treatment of the Mg layer on the oxygen-terminated LSAT(111) surface results in selective nucleation of a MgO interface layer which serves as a template for single-domain epitaxy of ZnO. Oxygen-polar ZnO film with an atomically smooth surface has been obtained, which is favorable for metal-ZnO Schottky contact with high barrier height.
We investigate the structural property and surface morphology of In𝑥Ga1−𝑥N films for In compositions ranging from 0.06 to 0.58, which are deposited by electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD). The results of x-ray diffraction (XRD) in InGaN films confirm that they have excellent 𝑐-axis orientation. The In content in the InGaN epilayers is checked by electron probe microanalysis (EPMA), which reveals that In fractions determined by XRD are in good agreement with the EPMA results. Atomic force microscopy measurements reveal that the grown films have a surface roughness that varies between 4.16 and 8.14 nm. The results suggest that it is possible to deposit high-𝑐-axis-orientation InGaN films with different In contents.
Highly preferred InN films are deposited on sapphire (0001) substrates by electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD) without using a buffer layer. The structure, surface morphological and electrical characteristics of InN are investigated by in-situ reflection high energy electron diffraction, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy and Hall effect measurement. The quality of the as-grown InN films is markedly improved at the optimized N2 flux of 100 sccm. The results show that the properties of the films are strongly dependent on N2 flux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.