Studies of mitochondrial genomes have a wide range of applications in phylogeny, population genetics, and evolutionary biology. In this study, we sequenced and analyzed the mitochondrial genome of Ooencyrtus plautus Huang & Noyes, 1994 (Hymenoptera, Encyrtidae). The nearly complete mitogenome of O. plautus was 15,730 bp in size, including 13 PCGs (protein-coding genes), 22 tRNAs, 2 rRNAs, and a nearly complete control region. The nucleotide composition was significantly biased toward adenine and thymine, with an A + T content of 84.6%. We used the reference sequence of Chouioia cunea and calculated the Ka/Ks ratio for each set of PCGs. The highest value of the Ka/Ks ratio within 13 PCGs was found in nad2 with 1.1, suggesting that they were subjected to positive selection. This phenomenon was first discovered in Encyrtidae. Compared with other encyrtid mitogenomes, a translocation of trnW was found in O. plautus, which was the first of its kind to be reported in Encyrtidae. Comparing with ancestral arrangement pattern, wasps reflect extensive gene rearrangements. Although these insects have a high frequency of gene rearrangement, species from the same family and genus tend to have similar gene sequences. As the number of sequenced mitochondrial genomes in Chalcidoidea increases, we summarize some of the rules of gene rearrangement in Chalcidoidea, that is four gene clusters with frequent gene rearrangements. Ten mitogenomes were included to reconstruct the phylogenetic trees of Encyrtidae based on both 13 PCGs (nucleotides of protein coding genes) and AA matrix (amino acids of protein coding genes) using the maximum likelihood and Bayesian inference methods. The phylogenetic tree reconstructed by Bayesian inference based on AA data set showed that Aenasius arizonensis and Metaphycus eriococci formed a clade representing Tetracneminae. The remaining six species formed a monophyletic clade representing Encyrtinae. In Encyrtinae, Encyrtus forms a monophyletic clade as a sister group to the clade formed by O. plautus and Diaphorencyrtus aligarhensis. Encyrtus sasakii and Encyrtus rhodooccisiae were most closely related species in this monophyletic clade. In addition, gene rearrangements can provide a valuable information for molecular phylogenetic reconstruction. These results enhance our understanding of phylogenetic relationships among Encyrtidae.
In this study, the mitochondrial genomes of 22 species from three subfamilies in the Sphingidae were sequenced, assembled, and annotated. Eight diurnal hawkmoths were included, of which six were newly sequenced (Hemaris radians, Macroglossum bombylans, M. fritzei, M. pyrrhosticta, Neogurelca himachala, and Sataspes xylocoparis) and two were previously published (Cephonodes hylas and Macroglossum stellatarum). The mitochondrial genomes of these eight diurnal hawkmoths were comparatively analyzed in terms of sequence length, nucleotide composition, relative synonymous codon usage, non-synonymous/synonymous substitution ratio, gene spacing, and repeat sequences. The mitogenomes of the eight species, ranging in length from 15,201 to 15,461 bp, encode the complete set of 37 genes usually found in animal mitogenomes. The base composition of the mitochondrial genomes showed A+T bias. The most commonly used codons were UUA (Leu), AUU (Ile), UUU (Phe), AUA (Met), and AAU (Asn), whereas GCG (Ala) and CCG (Pro) were rarely used. A phylogenetic tree of Sphingidae was constructed based on both maximum likelihood and Bayesian methods. We verified the monophyly of the four current subfamilies of Sphingidae, all of which had high support. In addition, we performed divergence time estimation and ancestral character reconstruction analyses. Diurnal behavior in hawkmoths originated 29.19 million years ago (Mya). It may have been influenced by the combination of herbaceous flourishing, which occurred 26–28 Mya, the uplift of the Tibetan Plateau, and the large-scale evolution of bats in the Oligocene to Pre-Miocene. Moreover, diurnalism in hawkmoths had multiple independent origins in Sphingidae.
Trichogramma chilonis is a kind of ovoid parasitic wasp, which has important application value in the biological control of pests. In this study, we sequenced and analyzed the complete mitogenome T. chilonis to compare mitogenomic structures and reconstruct phylogenetic relationships. The complete mitogenome sequence of T. chilonis is circular, 16,176 bp in size and encodes 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNA), 22 transfer RNA genes (tRNA), and a control region (CR). Nucleotide composition is highly biased toward A + T nucleotides (85.2%). All 13 protein-coding genes (PCGs) initiate with the standard start codon of ATN and terminate with the typical stop codon TAA/TAG. Phylogenetic analyses were performed using amino acids of 13 PCGs showed that T. chilonis is closely related to Trichogramma ostriniae .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.