Raman spectra of three bulk 4H-SiC wafers with different free carrier concentration were measured at temperature from 80 K to 873 K. As temperature increases, Raman peaks of most optical phonon modes show monotonous down shift. An anomalous non-monotonous variation with temperature, was observed in the A(1) longitudinal optical (LO) mode from doped samples. Two methods of theoretical fitting, one-mode (LO-plasma coupled (LOPC) mode) and two-mode (A(1)(LO) + LOPC) fitting, are employed to analyze this anomalous phenomenon. Theoretical simulations for temperature dependent Raman spectra by using two methods are critically examined. It turns out that one-mode method conforms well the experimental results, while two-mode method is untenable in physics. The non-monotonous variation of blue-red shifts with temperature for LOPC mode from doped 4H-SiC could be explained by the influence from ionization process of impurities on the process of Raman scattering. A quantitative description on temperature dependent Raman spectra for doped 4H-SiC is achieved, which matches well to experimental data.
Synchrotron radiation X-ray absorption and UV 325 nm excitation Raman scattering- photoluminescence (PL) have been employed to investigate a series of 4H-SiC wafers, including bulk, epitaxial single or multiple layer structures by chemical vapor deposition. Significant results on the atomic bonding and PL-Raman properties are obtained from these comparative studies.
Optical properties and carrier dynamics of InGaN/GaN asymmetric coupled quantum wells (ACQWs) are studied by excitation-power-dependent photoluminescence (PL), photoreflectance (PR) and time-resolved PL (TRPL) experiments. Under weak excitations, only the emission from the widest well is observed due to the tunneling from narrower to wider wells. Under strong excitations, the carrier distribution becomes more uniform and an enhanced emission from the mid well (2.5 nm well) is observed. Dependence of the PL intensity on excitation power is well explained by a rate equation model. The energy levels in the ACQW structure are clearly revealed by PR measurements and are in good agreement with calculations. Our results indicate that the enhanced emission from the mid well is ascribed to "reverse tunneling" from 3.0 to 2.5 nm well, which is confirmed by TRPL experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.