BackgroundAcute myeloid leukemia can develop as myoblasts infiltrate into organs and tissues anywhere other than the bone marrow, which called extramedullary infiltration (EMI), indicating a poor prognosis. Circular RNAs (circRNAs) are a novel class of non-coding RNAs that feature covalently closed continuous loops, suggesting their potential as micro RNA (miRNA) “sponges” that can participate in biological processes and pathogenesis. However, investigations on circRNAs in EMI were conducted rarely. In this study, the overall alterations of circRNAs and their regulatory network between EMI and non-EMI AML were delineated.MethodsCircRNA and whole genome microarrays derived from EMI and non-EMI AML bone marrow mononuclear cells were carried out. Functional analysis was performed via Gene Ontology and KEGG test methods. The speculated functional roles of circRNAs were based on mRNAs and predicted miRNAs that played intermediate roles. Integrated bioinformatic analysis was conducted to further characterize the circRNA/miRNA/mRNA regulatory network and identify the functions of distinct circRNAs. The Cancer Genome Atlas (TCGA) data were acquired to evaluate the poor prognosis of distinct target genes of circRNAs. Reverse transcription-quantitative polymerase chain reaction was conducted to identify the expression of has_circRNA_0004520. Connectivity map (CMap) analysis was further performed to predict potential therapeutic agents for EMI.Results253 circRNAs and 663 genes were upregulated and 259 circRNAs and 838 genes were downregulated in EMI compared to non-EMI AML samples. GO pathways were enriched in progress including cell adhesion (GO:0030155; GO:0007155), migration (GO:0016477; GO:0030334), signal transduction (GO:0009966; GO:0007165) and cell–cell communication. Overlapping circRNAs envolved in pathways related to regulate cell–cell crosstalk, 17 circRNAs were chosen based on their putative roles. 7 target genes of 17 circRNAs (LRRK1, PLXNB2, OLFML2A, LYPD5, APOL3, ZNF511, and ASB2) indicated a poor prognosis, while overexpression of PAPLN and NRXN3 indicated a better one based on data from TCGA. LY-294002, trichostatin A and SB-202190 were identified as therapeutic candidates for EMI by the CMap analysis.ConclusionTaken together, this study reveals the overall alterations of circRNA and mRNA involved in EMI and suggests potential circRNAs may act as biomarkers and targets for early diagnosis and treatment of EMI.Electronic supplementary materialThe online version of this article (10.1186/s12967-018-1726-x) contains supplementary material, which is available to authorized users.
BackgroundSapovirus (SaV), a member of the family Caliciviridae, is an etiologic agent of gastroenteritis in humans and pigs. To date, both intra- and inter-genogroup recombinant strains have been reported in many countries except for China. Here, we report an intra-genogroup recombination of porcine SaV identified from a piglet with diarrhea of China.MethodsA fecal sample from a 15-day-old piglet with diarrhea was collected from Shanghai, China. Common agents of gastroenteritis including porcine circovirus type 2, porcine rotavirus, porcine transmissible gastroenteritis virus, porcine SaV, porcine norovirus, and porcine epidemic diarrhea virus were detected by RT-PCR or PCR method. The complete genome of porcine SaV was then determined by RT-PCR method.Phylogenetic analyses based on the structural region and nonstructural (NS) region were carried out to group this SaV strain, and it was divided into different genotypes based on these two regions. Recombination analysis based on the genomic sequence was further performed to confirm this recombinant event and locate the breakpoint.ResultsAll of the agents showed negative results except for SaV. Analysis of the complete genome sequence showed that this strain was 7387 nt long with two ORFs and belonged to SaV GIII. Phylogenetic analyses of the structural region (complete VP1 nucleotide sequences) grouped this strain into GIII-3, whereas of the nonstructural region (RdRp nucleotide sequences) grouped this strain into GIII-2. Recombination analysis based on the genomic sequence confirmed this recombinant event and identified two parental strains that were JJ259 (KT922089, GIII-2) and CH430 (KF204570, GIII-3). The breakpoint located at position 5139 nt of the genome (RdRp-capsid junction region). Etiologic analysis showed the fecal sample was negative with the common agents of gastroenteritis, except for porcine SaV, which suggested that this recombinant strain might lead to this piglet diarrhea.ConclusionsP2 strain was an intra-genogroup recombinant porcine SaV. To the best of our knowledge, this study would be the first report that intra-genogroup recombination of porcine SaV infection was identified in pig herd in China.
The aim of this study was to investigate the immunoregulatory effects of hyperbaric oxygen (HBO) via promoting the apoptosis of peripheral blood lymphocytes (PBLs) to attenuate the severity of early stage acute pancreatitis (AP) in rats. Additionally, the persistence of the HBO treatment effects was evaluated. One hundred and twenty male Wistar rats were randomized into four groups: sham, AP, AP + normobaric oxygen (NBO), and AP + HBO. Each group consisted of 30 rats. Four hours after the induction of AP, the 30 rats in the AP + NBO group were given normobaric oxygen treatment with 100 % oxygen at 1 atm for 90 min. The 30 rats in the AP + HBO group received 100 % oxygen at 2.5 atm for 90 min, with a compression/decompression time of 15 min. The 30 rats in the AP group remained untreated. At 6, 12, and 24 h after the induction of AP, surviving rats from each group were sacrificed, and the blood and tissue samples were collected for the following measurements: the partial pressure of oxygen (PaO2) and oxygen saturation (SaO2) of the arterial blood, the levels of serum amylase, lipase, interleukin-2 (IL-2), interferon-γ (IFN-γ), interleukin-10 (IL-10), hepatocyte growth factor (HGF), and reactive oxygen species (ROS), and the mitochondrial membrane potential (∆Ψm) of the PBLs. The expression levels of procaspase-3, caspase-3, procaspase-9, and caspase-9 were also evaluated in the PBLs. Additionally, the apoptosis of PBLs was assessed, and the pancreatic tissues were subjected to a histopathological analysis by pathological grading and scoring. The histopathology of the lung, liver, kidney, duodenum, and heart was also analyzed at 12 h after the induction of AP. Significant differences were found at 6 and 12 h after AP induction. The HBO treatment significantly elevated the PaO2 and SaO2 levels, and the ROS levels in the PBLs. Additionally, HBO downregulated the levels of amylase and lipase. The HBO treatment also reduced the ∆Ψm levels, upregulated the expression of caspase-3 and caspase-9, and increased the apoptosis rate of the PBLs. Moreover, the HBO treatment decreased the serum concentrations of IL-2, IFN-γ and HGF, and reduced the pathological scores of the pancreatic tissue. The histopathological changes of the lung, liver, kidney, duodenum, and heart were also improved. A significant elevation of IL-10 occurred only at the 12-h time point. However, no obvious differences were found at the 24-h time point. This study demonstrated that the HBO treatment can promote the apoptosis of PBLs via a mitochondrial-dependent pathway and inhibit the inflammatory response. These immunoregulatory effects may play an important therapeutic role in attenuating the severity of early stage AP. The repeated administration of HBO or the use of HBO in combination with other approaches may further improve outcomes.
This study explores the effect of preoperative radiotherapy combined with FOLFOX chemotherapy on patients with locally advanced colon cancer (LACC). Data of 102 patients with LACC were retrospectively analyzed. All received surgical resection plus postoperative FOLFOX chemotherapy; whereas 58 patients underwent preoperative radiotherapy combined with FOLFOX chemotherapy (CRT group, combined with radiotherapy treatment group), 44 patients did not undergo radiotherapy (non-CRT group). Short-and long-term effects as well as operative complications were compared. The optical density values of the caudal-related homeobox transcription factor 2 and inhibitor of growth 4 in lesions, and malignant molecules including vascular endothelial growth factor and cathepsin-D in serum were compared. The CRT group showed higher total pathological complete tumor response rate and resection rate, and lower incidence of incisional infection than the non-CRT group (all P < 0.05). The CRT group was significantly better in the three-year disease-free survival than the non-CRT group ( P < 0.05), but slightly better in the three-year overall survival and disease-free survival in the first, second, and third years ( P > 0.05). The optical density values of the caudal-related homeobox transcription factor 2 and inhibitor of growth 4 were higher than those in the non-CRT group (both P < 0.05). The levels of serum vascular endothelial growth factor and cathepsin-D in the CRT group were lower than those in the non-CRT group (both P < 0.05). Preoperative radiotherapy combined with FOLFOX chemotherapy can improve the resection rate and the pathological complete response rate in LACC surgery, and improve the survival time and the disease-free survival condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.