The celebrated Cheeger's Inequality [AM85, Alo86] establishes a bound on the edge expansion of a graph via its spectrum. This inequality is central to a rich spectral theory of graphs, based on studying the eigenvalues and eigenvectors of the adjacency matrix (and other related matrices) of graphs. It has remained open to define a suitable spectral model for hypergraphs whose spectra can be used to estimate various combinatorial properties of the hypergraph.In this paper we introduce a new hypergraph Laplacian operator generalizing the Laplacian matrix of graphs. In particular, the operator is induced by a diffusion process on the hypergraph, such that within each hyperedge, measure flows from vertices having maximum weighted measure to those having minimum. Since the operator is non-linear, we have to exploit other properties of the diffusion process to recover a spectral property concerning the "second eigenvalue" of the resulting Laplacian. Moreover, we show that higher order spectral properties cannot hold in general using the current framework.We consider a stochastic diffusion process, in which each vertex also experiences Brownian noise from outside the system. We show a relationship between the second eigenvalue and the convergence behavior of the process.We show that various hypergraph parameters like multi-way expansion and diameter can be bounded using this operator's spectral properties. Since higher order spectral properties do not hold for the Laplacian operator, we instead use the concept of procedural minimizers to consider higher order Cheeger-like inequalities. For any k ∈ N, we give a polynomial time algorithm to compute an O(log r)-approximation to the k-th procedural minimizer, where r is the maximum cardinality of a hyperedge. We show that this approximation factor is optimal under the SSE hypothesis (introduced by [RS10]) for constant values of k.Moreover, using the factor preserving reduction from vertex expansion in graphs to hypergraph expansion, we show that all our results for hypergraphs extend to vertex expansion in graphs. * A preliminary version of this paper appeared in STOC 2015 [Lou15] and the current paper is the result of a merge with [CTZ15].
We introduce a fully online model of maximum cardinality matching in which all vertices arrive online. On the arrival of a vertex, its incident edges to previously-arrived vertices are revealed. Each vertex has a deadline that is after all its neighbors' arrivals. If a vertex remains unmatched until its deadline, the algorithm must then irrevocably either match it to an unmatched neighbor, or leave it unmatched. The model generalizes the existing one-sided online model and is motivated by applications including ride-sharing platforms, real-estate agency, etc.We show that the Ranking algorithm by Karp et al. (STOC 1990) is 0.5211-competitive in our fully online model for general graphs. Our analysis brings a novel charging mechanic into the randomized primal dual technique by Devanur et al. (SODA 2013), allowing a vertex other than the two endpoints of a matched edge to share the gain. To our knowledge, this is the first analysis of Ranking that beats 0.5 on general graphs in an online matching problem, a first step towards solving the open problem by Karp et al. (STOC 1990) about the optimality of Ranking on general graphs. If the graph is bipartite, we show that the competitive ratio of Ranking is between 0.5541 and 0.5671. Finally, we prove that the fully online model is strictly harder than the previous model as no online algorithm can be 0.6317 < 1 − 1 e -competitive in our model even for bipartite graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.