We present a robust model to locate facial landmarks under different views and possibly severe occlusions. To build reliable relationships between face appearance and shape with large view variations, we propose to formulate face alignment as an 1 -induced Stagewise Relational Dictionary (SRD) learning problem. During each training stage, the SRD model learns a relational dictionary to capture consistent relationships between face appearance and shape, which are respectively modeled by the pose-indexed image features and the shape displacements for current estimated landmarks. During testing, the SRD model automatically selects a sparse set of the most related shape displacements for the testing face and uses them to refine its shape iteratively. To locate facial landmarks under occlusions, we further propose to learn an occlusion dictionary to model different kinds of partial face occlusions. By deploying the occlusion dictionary into the SRD model, the alignment performance for occluded faces can be further improved. Our algorithm is simple, effective, and easy to implement. Extensive experiments on two benchmark datasets and two newly built datasets have demonstrated its superior performances over the state-of-the-art methods, especially for faces with large view variations and/or occlusions.
Face alignment acts as an important task in computer vision. Regression-based methods currently dominate the approach to solving this problem, which generally employ a series of mapping functions from the face appearance to iteratively update the face shape hypothesis. One keypoint here is thus how to perform the regression procedure. In this work, we formulate this regression procedure as a sparse coding problem. We learn two relational dictionaries, one for the face appearance and the other one for the face shape, with coupled reconstruction coefficient to capture their underlying relationships. To deploy this model for face alignment, we derive the relational dictionaries in a stage-wised manner to perform close-loop refinement of themselves, i.e., the face appearance dictionary is first learned from the face shape dictionary and then used to update the face shape hypothesis, and the updated face shape dictionary from the shape hypothesis is in return used to refine the face appearance dictionary. To improve the model accuracy, we extend this model hierarchically from the whole face shape to face part shapes, thus both the global and local view variations of a face are captured. To locate facial landmarks under occlusions, we further introduce an occlusion dictionary into the face appearance dictionary to recover face shape from partially occluded face appearance. The occlusion dictionary is learned in a data driven manner from background images to represent a set of elemental occlusion patterns, a sparse combination of which models various practical partial face occlusions. By integrating all these technical innovations, we obtain a robust and accurate approach to locate facial landmarks under different face views and possibly severe occlusions for face images in the wild. Extensive experimental analyses and evaluations on different benchmark datasets, as well as two new datasets built by ourselves, have demonstrated the robustness and accuracy of our proposed model, especially for face images with large view variations and/or severe occlusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.