In order to realize high-value utilization of calcium silicon slag (CSS) and silica fume (SF), the dynamic hydrothermal synthesis experiments of CSS and SF were carried out under different hydrothermal synthesis temperatures. In addition, phase category, microstructure, and micropore parameters of the synthesis product were analyzed through testing methods of XRD, SEM, EDS and micropore analysis. The results show that the main mechanism of synthesis reaction is that firstly β-Dicalcium silicate, the main mineral in CSS, hydrates to produce amorphous C–S–H and Ca(OH)2, and the environment of system is induced to strong alkaline. Therefore, the highly polymerized Si-O bond of SF is broken under the polarization of OH− to form (SiO4) of Q0. Next, amorphous C–S–H, Ca(OH)2 and (SiO4) of Q0 react each other to gradually produce various of calcium silicate minerals. With an increase of synthesis temperature, the crystal evolution order for calcium silicate minerals is cocoon-like C–S–H, mesh-like C–S–H, large flake-like gyrolite, small flake-like gyrolite, petal-like gyrolite, square flake-like calcium silicate hydroxide hydrate, and strip-like tobermorite. In addition, petal-like calcium silicate with high average pore volume (APV), specific surface area (SSA) and low average pore diameter (APD) can be prepared under the 230 °C synthesis condition.
Considering the recent eco-friendly and efficient utilization of three kinds of solid waste, including calcium silicate slag (CSS), fly ash (FA), and blast-furnace slag (BFS), alkali-activated cementitious composite materials using these three waste products were prepared with varying content of sodium silicate solution. The hydration mechanisms of the cementitious materials were analyzed by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy. The results show that the composite is a binary cementitious system composed of C(N)-A-S-H and C-S-H. Si and Al minerals in FA and BFS are depolymerized to form the Q0 structure of SiO4 and AlO4. Meanwhile, β-dicalcium silicate in CSS hydrates to form C-S-H and Ca(OH)2. Part of Ca(OH)2 reacts with the Q0 structure of AlO4 and SiO4 to produce lawsonite and wairakite with a low polymerization degree of the Si-O and Al-O bonds. With the participation of Na+, part of Ca(OH)2 reacts with the Q0 structure of AlO4 and the Q3 structure of SiO4, which comes from the sodium silicate solution. When the sodium silicate content is 9.2%, the macro properties of the composites effectively reach saturation. The compressive strength for composites with 9.2% sodium silicate was 23.7 and 35.9 MPa after curing for 7 and 28 days, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.