The recent ban on the use of antibiotics as a feed additive has led to the search for alternative sources of antibiotics in the feed industry. Presently, probiotics are considered as a potential substitute for antibiotic as a live biotherapeutic agent to improve animal health and performance. Accordingly, study was focused on evaluating the effect of Saccharomyces boulardii (Sb) and Bacillus subtilis B10 (Bs) on ultrastructure modulation and mucosal immunity development in broiler chickens. A total of three hundred 1-d-old Sanhuang broilers (a Chinese cross breed) were randomized into 3 groups, each group with 5 replications (n = 20). The control group (Ctr) was fed a basal diet containing an antibiotic (virginiamycin, 20 mg/kg). Meanwhile, broilers in experimental groups received Sb and Bs (1 × 10(8) cfu/kg of feed) in addition to the basal diet for 72 d. The results of the experimental groups revealed a significant improvement in live BW and relative weight of bursa of Fabricius and thymus. Also, intestinal villus height, width, and number of goblet cells increased in the Sb and Bs groups. Meanwhile, modulation in the intestinal ultrastructure and increased mRNA expression levels of occluding, cloudin2, and cloudin3 (P < 0.05) were observed in the Sb and Bs groups. Moreover, IgA-positive cells significantly increased in the jejunum of Sb- and Bs-supplemented groups (P < 0.05). Intestinal cytokines interleukin-6, tumor necrosis factor-α, interleukin-10, transforming growth factor-β, and secretory IgA concentrations were (P < 0.05) improved in the probiotic groups; however, Sb induced inflammatory and antiinflammatory cytokines (P < 0.05) in comparison with the Ctr group. The present findings conclusively revealed that Sb and Bs increased IgA-positive cells in the lumen of the intestinal villus and revealed that Sb and Bs could modulate intestinal ultrastructure through increasing occluding, cloudin2, and cloudin3 mRNA expression levels in broiler intestine.
Generating temporal action proposals remains a very challenging problem, where the main issue lies in predicting precise temporal proposal boundaries and reliable action confidence in long and untrimmed real-world videos. In this paper, we propose an efficient and unified framework to generate temporal action proposals named Dense Boundary Generator (DBG), which draws inspiration from boundary-sensitive methods and implements boundary classification and action completeness regression for densely distributed proposals. In particular, the DBG consists of two modules: Temporal boundary classification (TBC) and Action-aware completeness regression (ACR). The TBC aims to provide two temporal boundary confidence maps by low-level two-stream features, while the ACR is designed to generate an action completeness score map by high-level action-aware features. Moreover, we introduce a dual stream BaseNet (DSB) to encode RGB and optical flow information, which helps to capture discriminative boundary and actionness features. Extensive experiments on popular benchmarks ActivityNet-1.3 and THUMOS14 demonstrate the superiority of DBG over the state-of-the-art proposal generator (e.g., MGG and BMN).
In the present study, a consortium of two rhizobacteria Bacillus amyloliquefaciens Bk7 and Brevibacillus laterosporus B4, termed 'BB', biochemical elicitors salicylic acid and β-aminobutyric acid (SB) and their mixture (BBSB) were investigated for cold and drought stress tolerance in rice plants. After withholding water for 16 days, rice plants treated with BBSB showed 100% survival, improved seedling height (35.4 cm), shoot number (6.12), and showed minimum symptoms of chlorosis (19%), wilting (4%), necrosis (6%) and rolling of leaves. Similarly, BB inoculation enhanced plant growth and reduced overall symptoms in rice seedlings subjected to 0 ± 5 °C for 24 h. Our results imply several mechanisms underlying BB- and BBSB-elicited stress tolerance. In contrast to the control, both treatments significantly decreased leaf monodehydroascorbate (MDA) content and electrolyte leakage, and increased leaf proline and cholorophyll content. Moreover, activities of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) increased 3.0- and 3.6-fold, respectively. Moreover, expression of OsMYB3R-2, OsDIL, OsDREB1A and OsCDPK13 genes was significantly up-regulated, suggesting that these genes play important roles in abiotic stress tolerance of rice. In addition, bacterial strains Bk7 and B4 were able to produce high amounts of IAA and siderophores, and colonise the plant roots, while only strain Bk7 exhibited the capability to form biofilms and solubilise inorganic phosphate. This study indicates that the BB and BBSB bio-formulations can be used to confer induced systematic tolerance and improve the health of rice plants subject to chilling and drought stress.
Bridging veins drain the venous blood from the cerebral cortex into the superior sagittal sinus (SSS) and doing so they bridge the subdural space. Despite their importance in head impact biomechanics, little is known about their properties with respect to histology, morphology and mechanical behaviour. Knowledge of these characteristics is essential for creating a biofidelic finite element model to study the biomechanics of head impact, ultimately leading to the improved design of protective devices by setting up tolerance criteria. This paper presents a comprehensive review of the state-of-the-art knowledge on bridging veins. Tolerance criteria to prevent head injury through impact have been set by a number of research groups, either directly through impact experiments or by means of finite element (FE) simulations. Current state-of-the-art FE head models still lack a biofidelic representation of the bridging veins. To achieve this, a thorough insight into their nature and behaviour is required. Therefore, an overview of the general morphology and histology is provided here, showing the clearly heterogeneous nature of the bridging vein complex, with its three different layers and distinct morphological and histological changes at the region of outflow into the superior sagittal sinus. Apart from a complex morphology, bridging veins also exhibit complex mechanical behaviour, being nonlinear, viscoelastic and prone to damage. Existing material models capable of capturing these properties, as well as methods for experimental characterisation, are discussed. Future work required in bridging vein research is firstly to achieve consensus on aspects regarding morphology and histology, especially in the outflow cuff segment. Secondly, the advised material models need to be populated with realistic parameters through biaxial mechanical experiments adapted to the dimensions of the bridging vein samples. Finally, updating the existing finite element head models with these parameters will render them truly biofidelic, allowing the establishment of accurate tolerance criteria and, ultimately, better head protection devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.