Salinization is a global agricultural problem with many negative effects on crops, including delaying germination, inhibiting growth, and reducing crop yield and quality. This study compared the salt tolerance of 20 soybean varieties at the germination stage to identify soybean germplasm with a high salt tolerance. Germination tests were conducted in Petri dishes containing 0, 50, 100, 150, and 200 mmol L−1 NaCl. Each Petri dish contained 20 soybean seeds, and each treatment was repeated five times. The indicators of germination potential, germination rate, hypocotyl length, and radicle length were measured. The salt tolerance of 20 soybean varieties was graded, and the theoretical identification concentration was determined by cluster analysis, the membership function method, one-way analysis of variance, and quadratic equation analysis. The relative germination rate, relative germination potential, relative root length, and relative bud length of the 20 soybean germplasms decreased when the salt concentration was >50 mmol L−1, compared with that of the Ctrl. The half-lethal salt concentration of soybean was 164.50 mmol L−1, and the coefficient of variation was 18.90%. Twenty soybean varieties were divided into three salt tolerance levels following cluster analysis: Dongnong 254, Heike 123, Heike 58, Heihe 49, and Heike 68 were salt-tolerant varieties, and Xihai 2, Suinong 94, Kenfeng 16, and Heinong 84 were salt-sensitive varieties, respectively. This study identified suitable soybean varieties for planting in areas severely affected by salt and provided materials for screening and extracting parents or genes to breed salt-tolerant varieties in areas where direct planting is impossible. It assists crop breeding at the molecular level to cope with increasingly serious salt stress.
IntroductionSoybean is the world’s most important cultivated crop, and drought can affect their growth and, eventually, yields. Foliar application of mepiquat chloride (MC) can potentially alleviate the damage caused by drought stress in plants; however, the mechanism of MC regulation of soybean drought response has not been studied.MethodsThis study investigated the mechanism of soybean drought response regulation by mepiquat chloride in two varieties of soybean, sensitive Heinong 65 (HN65) and drought-tolerant Heinong44 (HN44), under three treatment scenarios, normal, drought stress, and drought stress + MC conditions.Results and discussionMC promoted dry matter accumulation under drought stress, reduced plant height, decreased antioxidant enzyme activity, and significantly decreased malondialdehyde content. The light capture processes, photosystems I and II, were inhibited; however, accumulation and upregulation of several amino acids and flavonoids by MC was observed. Multi-omics joint analysis indicated 2-oxocarboxylic acid metabolism and isoflavone biosynthetic pathways to be the core pathways by which MC regulated soybean drought response. Candidate genes such as LOC100816177, SOMT-2, LOC100784120, LOC100797504, LOC100794610, and LOC100819853 were identified to be crucial for the drought resistance of soybeans. Finally, a model was constructed to systematically describe the regulatory mechanism of MC application in soybean under drought stress. This study fills the research gap of MC in the field of soybean resistance.ConclusionNETs can promote gastric cancer metastasis by initiating COX-2 through TLR2, and COX-2 may become a target for gastric cancer immunotherapy.
Soybean is an important grain and oil crop cultivated worldwide. Mepiquat chloride (DPC), a plant growth regulator, is widely used in cotton planting; however, its application in soybean remains rarely studied. Herein, we explored DPC regulation in soybeans using morphology, physiology, and proteomics analyses. Morphological and physiological analyses showed that DPC significantly reduced the plant height and shoot dry weight, promoted the growth of lateral roots in a specific concentration range, increased the activities of the leaf protective enzymes (superoxide dismutase and catalase), and decreased and increased malondialdehyde and total flavonoid contents, respectively. Proteomic analysis of leaves treated with 100 mg/L DPC revealed that multiple proteins related to plant growth and stress resistance were regulated after treatment. The key proteins involved in photosynthesis and cell wall elongation in the two varieties of soybean were significantly downregulated and those related to promoting lateral root growth and stress resistance were significantly upregulated. Overall, DPC inhibited shoot growth and photosynthesis in soybean but promoted lateral root growth, enhanced protective enzyme activity, and improved the ability of plants to resist abiotic stress. This study preliminarily determined the suitable DPC concentration for soybean spraying and provided a theoretical basis for its rational application.
Soybean is an important food crop in the world. Drought can seriously affect the yield and quality of soybean; however, studies on extreme drought—weak and strong—are absent. In this study, drought-tolerant soybean Heinong 44 (HN44) and sensitive soybean Heinong 65 (HN65) were used as the test varieties, and the effects of strong and weak droughts on the physiological stability of soybean were explored through the drought treatment of soybean at the early flowering stage. The results showed that the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anions () increased with the increase in the degree of drought. The plant height and relative water content decreased, and photosynthesis was inhibited. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the total antioxidant capacity (T-AOC) showed a trend of first increasing and then decreasing. Through contribution analysis, CAT changed the most, and the role of SOD gradually increased with the aggravation of drought. With the aggravation of drought, the contents of soluble sugar (SSC) and proline (Pro) increased gradually, and the content of soluble protein (SP) increased initially and then decreased. According to contribution analysis, SSC had the highest contribution to osmotic adjustment. SSC and Pro showed an upward trend with the aggravation of drought, indicating that their role in drought was gradually enhanced.
Nitric oxide (NO) plays a significant role in plant drought resistance. However, the effects of the exogenous application of NO to crops under drought stress vary within and among species. In this study, we explored the influence of exogenous sodium nitroprusside (SNP) on the drought resistance of soybean leaves in the full flowering stage using two varieties: drought-tolerant HN44 and non-drought-tolerant HN65. Spraying SNP on soybean leaves at the full flowering period under drought stress improved the NO content in soybean leaves. The activities of nitrite reductase (NiR) and nitrate reductase (NR) in leaves were affected by NO inhibition. The activity of antioxidant enzymes in leaves increased with the extension of SNP application time. Contents of osmomodulatory substances, including proline (Pro), soluble sugar (SS), and soluble protein (SP) increased gradually with the extension of SNP application time. The malondialdehyde (MDA) content decreased as the NO content increased, thus reducing membrane system damage. Overall, spraying SNP reduced damage and improved the ability of soybean to cope with drought. This study explored the physiological changes of SNP soybean under drought stress and provided theoretical basis for improving drought-resistant cultivation of soybean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.