Soybean is an important crop grown worldwide, and drought stress seriously affects the yield and quality of soybean. Therefore, it is necessary to elucidate the molecular mechanisms underlying soybean resistance to drought stress. In this study, RNA-seq technology and ultra-performance liquid chromatography–tandem mass spectrometry were used to analyze the transcriptome and metabolome changes in soybean leaves at the seedling stage under drought stress. The results showed that there were 4790 and 3483 DEGs (differentially expressed genes) and 156 and 124 DAMs (differentially expressed metabolites), respectively, in the HN65CK vs. HN65S0 and HN44CK vs. HN44S0 comparison groups. Comprehensive analysis of transcriptomic and metabolomic data reveals metabolic regulation of seedling soybean in response to drought stress. Some candidate genes such as LOC100802571, LOC100814585, LOC100777350 and LOC100787920, LOC100800547, and LOC100785313 showed different expression trends between the two cultivars, which may cause differences in drought resistance. Secondly, a large number of flavonoids were identified, and the expression of Monohydroxy-trimethoxyflavone-O-(6″-malonyl)glucoside was upregulated between the two varieties. Finally, several key candidate genes and metabolites involved in isoflavone biosynthesis and the TCA cycle were identified, suggesting that these metabolic pathways play important roles in soybean response to drought. Our study deepens the understanding of soybean drought resistance mechanisms and provides references for soybean drought resistance breeding.
IntroductionSoybean is the world’s most important cultivated crop, and drought can affect their growth and, eventually, yields. Foliar application of mepiquat chloride (MC) can potentially alleviate the damage caused by drought stress in plants; however, the mechanism of MC regulation of soybean drought response has not been studied.MethodsThis study investigated the mechanism of soybean drought response regulation by mepiquat chloride in two varieties of soybean, sensitive Heinong 65 (HN65) and drought-tolerant Heinong44 (HN44), under three treatment scenarios, normal, drought stress, and drought stress + MC conditions.Results and discussionMC promoted dry matter accumulation under drought stress, reduced plant height, decreased antioxidant enzyme activity, and significantly decreased malondialdehyde content. The light capture processes, photosystems I and II, were inhibited; however, accumulation and upregulation of several amino acids and flavonoids by MC was observed. Multi-omics joint analysis indicated 2-oxocarboxylic acid metabolism and isoflavone biosynthetic pathways to be the core pathways by which MC regulated soybean drought response. Candidate genes such as LOC100816177, SOMT-2, LOC100784120, LOC100797504, LOC100794610, and LOC100819853 were identified to be crucial for the drought resistance of soybeans. Finally, a model was constructed to systematically describe the regulatory mechanism of MC application in soybean under drought stress. This study fills the research gap of MC in the field of soybean resistance.ConclusionNETs can promote gastric cancer metastasis by initiating COX-2 through TLR2, and COX-2 may become a target for gastric cancer immunotherapy.
Soybean is an important food crop in the world. Drought can seriously affect the yield and quality of soybean; however, studies on extreme drought—weak and strong—are absent. In this study, drought-tolerant soybean Heinong 44 (HN44) and sensitive soybean Heinong 65 (HN65) were used as the test varieties, and the effects of strong and weak droughts on the physiological stability of soybean were explored through the drought treatment of soybean at the early flowering stage. The results showed that the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anions () increased with the increase in the degree of drought. The plant height and relative water content decreased, and photosynthesis was inhibited. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the total antioxidant capacity (T-AOC) showed a trend of first increasing and then decreasing. Through contribution analysis, CAT changed the most, and the role of SOD gradually increased with the aggravation of drought. With the aggravation of drought, the contents of soluble sugar (SSC) and proline (Pro) increased gradually, and the content of soluble protein (SP) increased initially and then decreased. According to contribution analysis, SSC had the highest contribution to osmotic adjustment. SSC and Pro showed an upward trend with the aggravation of drought, indicating that their role in drought was gradually enhanced.
Sulfur is an indispensable nutrient for plant growth and development, and is important in the synthesis of sulfurcontaining amino acids. Although several studies on the effects of some macronutrients, including nitrogen and phosphorus, have been conducted on the performance of several crops at the genomic level, studies on the effect of sulfur on crop performance are limited. Therefore, this study aimed to examine the effect of different sulfur concentration on the transcriptome of soybean. Additionally, soybean yield parameters were also examined. Two soybean varieties, DND252 and HN84, were exposed to low and high concentrations of sulfur, and differentially expressed genes (DEGs) were identified using transcriptome analysis. The study results showed that the DEGs identified in the DND252 variety were involved in stimuli response, DNA binding and cell periphery under low sulfur concentrations. Also, the DEGs identified under high sulfur concentration were involved in membrane and membrane parts. Additionally, DEGs identified in the HN84 variety under low sulfur concentrations had similar functions as those identified in DND252 under high sulfur concentrations, indicating that HN84 was more sensitive to sulfur concentration changes than DND252. However, under higher sulfur concentrations, the DEGs identified in HN84 were primarily involved in membrane and membrane parts, indicating that high sulfur can cause cell membrane damage. Furthermore, soybean grown using 2.0 mmol/L sulfur had the best yield. The findings of this study identified candidate genes for the breeding and development of sulfur-efficient soybean varieties.
Nitric oxide (NO) plays a significant role in plant drought resistance. However, the effects of the exogenous application of NO to crops under drought stress vary within and among species. In this study, we explored the influence of exogenous sodium nitroprusside (SNP) on the drought resistance of soybean leaves in the full flowering stage using two varieties: drought-tolerant HN44 and non-drought-tolerant HN65. Spraying SNP on soybean leaves at the full flowering period under drought stress improved the NO content in soybean leaves. The activities of nitrite reductase (NiR) and nitrate reductase (NR) in leaves were affected by NO inhibition. The activity of antioxidant enzymes in leaves increased with the extension of SNP application time. Contents of osmomodulatory substances, including proline (Pro), soluble sugar (SS), and soluble protein (SP) increased gradually with the extension of SNP application time. The malondialdehyde (MDA) content decreased as the NO content increased, thus reducing membrane system damage. Overall, spraying SNP reduced damage and improved the ability of soybean to cope with drought. This study explored the physiological changes of SNP soybean under drought stress and provided theoretical basis for improving drought-resistant cultivation of soybean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.