This study investigated the prevalence of recto-vaginal Group B Streptococcus (GBS) colonization, serotype distribution, and antimicrobial susceptibility patterns among pregnant women in Dongguan, China. Recto-vaginal swabs were collected from pregnant women at gestational age 35-37 weeks between January 1 st 2009 and December 31 st 2014. Isolates were serotyped by latex-agglutination and were tested against seven antimicrobials by disk diffusion. Of 7,726 pregnant women who completed GBS testing, 636 (8.2%) were GBS carriers. Of 153 GBS isolates available for typing, 6 serotypes (Ia, Ib, III, V, VI and VIII) were identified with type III being predominant, while 9 (5.9%) were non-typable isolates. All isolates were sensitive to penicillin, ceftriaxone, linezolid and vancomycin, whereas 52.4% were resistant to clindamycin, 25.9% were resistant to levofloxacin and 64.9% were resistant to erythromycin. This study showed the recto-vaginal colonization prevalence of GBS in Dongguan is significant. Due to 100% susceptibility to penicillin of all GBS samples, penicillin remains the first recommendation for treatment and prevention against GBS infection. Susceptibility testing should be performed for women allergic to penicillin in order to choose the most appropriate antibacterial agents for treatment and prevention of vertical transmission to neonates. In addition, we suggest establishing standard processes for GBS culture and identification in China as early as possible.
Recovery of the blood supply is the most effective treatment against ischemic heart disease; however, it is also a major cause of myocardial ischemia/reperfusion injury in clinical therapy. Curcumin has been reported to possess beneficial effects against hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury by regulating cell proliferation, apoptosis and antioxidant enzyme activity. The aim of the present study was to investigate the molecular mechanisms underlying the effects of curcumin on H/R-injured cardiomyocytes. H9C2 cardiomyocytes were pretreated with curcumin, and then cultured under H/R conditions. The viability of H9C2 cells was measured using a Cell Counting kit-8 assay, and the levels of intracellular lactate dehydrogenase (LDH), malondialdehyde (MDA) and superoxide dismutase (SOD) were measured to assess cell injury. Levels of reactive oxygen species (ROS) and apoptosis were evaluated by flow cytometry. The expression levels of Notch intracellular domain (NICD) and numerous downstream genes were analyzed via reverse transcription-quantitative polymerase chain reaction and western blotting. The results revealed that curcumin protected H9C2 cells against H/R-induced injury, reversing the H/R-induced increases in LDH and MDA levels, and decreases in SOD levels. ROS levels in H/R-induced cells were also significantly downregulated by curcumin treatment (P<0.01), and the apoptotic rate was significantly decreased from 15.13% in the H/R group to 7.7% in the H/R + curcumin group (P<0.01). The expression levels of NICD, hairy and enhancer of split (Hes)-1, Hes-5 and hairy/enhancer-of-split related with YRPW motif protein 1 (Hey-1) were significantly decreased in H/R-treated cells following curcumin treatment. Treatment with Jagged1 attenuated the effects of curcumin on cell viability, ROS levels and apoptosis; the Notch pathway was also reactivated. The present study indicated that there was a role for the Notch pathway in the protective effects of curcumin against H/R-induced cardiomyocyte injury, suggesting that downregulation of the Notch pathway may alleviate H/R-induced injury in H9C2 cells.
Multi-robot systems are widely used to handle complex and cooperative missions in various industrial applications. Although robotic middleware has become the key to reducing the complexity of multi-robot application development, existing works still have limitations in controlling multiple robots to perform missions cooperatively.To enable multi-robot cooperation, middleware should provide high-level abstraction support, dynamic configuration, communication, and synchronization. In this article, we propose GraphWare, a novel middleware that provides a graph-based programming abstraction and its underlying runtime kernel for programming and building multi-robot cooperation applications. The graph-based programming abstraction can express cooperative missions without exposing the complexity of managing multiple robots. The runtime kernel configures and manages multiple heterogeneous robots to intelligently perform cooperative missions. We implement GraphWare and evaluate its performance with ball collection missions which are cooperatively accomplished by a group of mobile robots, and study the fault-tolerance, flexibility, and scalability of the middleware in the realistic simulation. The experimental results demonstrate that GraphWare facilitates the multi-robot cooperative mission with efficient mission completion time, high success rate, and marginal runtime overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.