Fluorescent silver nanoclusters, in particular DNA stabilized (templated) silver nanoclusters, have attracted much attention because of their molecule-like optical properties, strong fluorescence and good biocompatibility. In this feature article, we summarize the DNA stabilized silver nanoclusters from the viewpoints of synthesis, optical properties, as well as recent applications in biological detection and imaging.
Copper is a highly toxic environmental pollutant with bioaccumulative properties. Therefore, sensitive Cu(2+) detection is very important to prevent over-ingestion, and visual detection using unaugmented vision is preferred for practical applications. In this study, hyperbranched polyethyleneimine-protected silver nanoclusters (hPEI-AgNCs) were successfully synthesized using a facile, one-pot reaction under mild conditions. The hPEI-AgNCs were very stable against extreme pH, ionic strength, temperature, and photoillumination and could act as sensitive and selective Cu(2+) sensing nanoprobes in aqueous solutions with a 10 nM limit of detection. In addition, hPEI-AgNCs-doped agarose hydrogels were developed as an instrument-free and regenerable platform for visual Cu(2+) and water quality monitoring.
We developed a novel strategy to prepare functionalized fluorescent gold nanodots (AuNDs) based on a ligand exchange reaction and demonstrated that glutathione modified AuNDs can be utilized for highly sensitive and selective Pb(2+) sensing in aqueous solution.
A series of dual-ligand cofunctionalized fluorescent gold nanodots with similar fluorescence and diverse surface properties has been designed and synthesized to build a protein sensing array. Using this "chemical nose/tongue" strategy, fluorescence response patterns can be obtained on the array and identified via linear discriminant analysis (LDA). Eight proteins have been well distinguished at low concentration (A280 = 0.005) based on this sensor array. The practicability of this sensor array was further validated by high accuracy (100%) examination of 48 unknown protein samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.